Quasi-Hamiltonian geometry of meromorphic connections

被引:51
作者
Boalch, Philip [1 ]
机构
[1] Ecole Normale Super, CNRS, Dept Maths & Applicat, F-75005 Paris, France
关键词
D O I
10.1215/S0012-7094-07-13924-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each connected complex reductive group G, we find a family of new examples of complex quasi-Hamiltonian G-spaces with G-valued moment maps. These spaces arise naturally as moduli spaces of (suitably framed) meromorphic connections on principal G-bundles over a disk, and they generalise the conjugacy class example of Alekseev, Malkin, and Meinrenken [3] (which appears in the simple pole case). Using the "fusion product" in the theory, this gives a finite-dimensional construction of the natural symplectic structures on the spaces of monodromy/Stokes data of meromorphic connections over arbitrary genus Riemann surfaces, together with a new, proof of the symplectic nature of isomonodromic deformations of such connections.
引用
收藏
页码:369 / 405
页数:37
相关论文
共 50 条
[21]   Non-commutative quasi-Hamiltonian spaces [J].
Van den Bergh, Michel .
POISSON GEOMETRY IN MATHEMATICS AND PHYSICS, 2008, 450 :273-299
[22]   Optimal nonlinear feedback control of quasi-Hamiltonian systems [J].
朱位秋 ;
应祖光 .
Science China Mathematics, 1999, (11) :1213-1219
[23]   Optimal nonlinear feedback control of quasi-Hamiltonian systems [J].
Weiqiu Zhu ;
Zuguang Ying .
Science in China Series A: Mathematics, 1999, 42 :1213-1219
[24]   Optimal nonlinear feedback control of quasi-Hamiltonian systems [J].
Zhu, WQ ;
Ying, ZG .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (11) :1213-1219
[25]   Quasi-Hamiltonian Structure Associated with an Integrable Coupling System [J].
Luo Lin ;
Fan En-Gui .
CHINESE PHYSICS LETTERS, 2009, 26 (05)
[26]   A quasi-Hamiltonian discretization of the thermal shallow water equations [J].
Eldred, Christopher ;
Dubos, Thomas ;
Kritsikis, Evaggelos .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 379 :1-31
[27]   Dirac operators on quasi-Hamiltonian G-spaces [J].
Song, Yanli .
JOURNAL OF GEOMETRY AND PHYSICS, 2016, 106 :70-86
[28]   Generalized Hamiltonian norm, Lyapunov exponent and stochastic stability for quasi-Hamiltonian systems [J].
Ying, ZG .
PHYSICS LETTERS A, 2004, 333 (3-4) :271-276
[29]   A minimax optimal control strategy for uncertain quasi-Hamiltonian systems [J].
Wang, Yong ;
Ying, Zu-guang ;
Zhu, Wei-qiu .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (07) :950-954
[30]   QUASI-HAMILTONIAN MECHANICS ASSOCIATED TO REPRESENTATIONS OF LIE-ALGEBRAS [J].
KUPERSHMIDT, BA .
PHYSICS LETTERS A, 1987, 120 (09) :452-454