S, N co-doped graphene quantum dots decorated TiO2 and supported with carbon for oxygen reduction reaction catalysis

被引:42
|
作者
Mahato, Debashis [1 ]
Kharwar, Yashwant Pratap [2 ]
Ramanujam, Kothandaraman [2 ,3 ]
Haridoss, Prathap [1 ]
Thomas, Tiju [1 ,3 ]
机构
[1] Indian Inst Technol Madras, Dept Met & Mat Engn, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Chem, Clean Energy Lab, Chennai 600036, Tamil Nadu, India
[3] IIT Madras, DST IITM Solar Energy Harnessing Ctr, Chennai 600036, Tamil Nadu, India
关键词
Oxygen reduction reaction; Doped graphene quantum dots; TiO2; Electrocatalysis; FUEL-CELL; ELECTROCATALYTIC ACTIVITY; EFFICIENT CATALYST; HYBRID; COMPOSITES; PERFORMANCE; OXIDE; NANOCOMPOSITE; ABSORPTION; NANORODS;
D O I
10.1016/j.ijhydene.2021.04.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sluggish kinetics and catalyst instability in oxygen reduction reaction are the central issues in fuel cell and metal-air battery technologies. For that, highly active, stable, and low-cost non-platinum based electrocatalysts for oxygen reduction reaction are an immediate requirement in fuel cell and metal-air battery technologies. A new composite (S,N-GQD/TiO2/C-800) is synthesized, made of sulfur (S) and nitrogen (N) co-doped graphene quantum dot (GQD) with TiO2. This composite is supported on carbon on heating at 800 degrees C under N-2 atmosphere and is explored for oxygen reduction reaction (ORR) catalyst. The synthesized composite S,N-GQD/TiO2/C-800, shows outstanding catalytic activity with an onset potential of 0.91 V and a half-wave potential of 0.82 V vs. RHE, an alkaline medium. The Tafel slope of the catalyst is 61 mV dec(-1). The catalyst is an excellent methanol tolerant and shows good stability in an alkaline medium. The excellent ORR activity of S,N-GQD/TiO2/C-800 is ascribed to well-built interactivity between the S,N-GQD/TiO2, and the carbon support. The unique structure offers advantages, with outstanding electrical conductivity, high surface area, and excellent charge transfer kinetics between the doped GQD and TiO2 interface and subsequently from the carbon surface to the S,N-GQD/TiO2. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:21549 / 21565
页数:17
相关论文
共 50 条
  • [31] Architecture design of TiO2 with Co-doped CdS quantum dots photoelectrode for water splitting
    Tezcan, Fatih
    Ahmad, Abrar
    Kardas, Gulfeza
    TURKISH JOURNAL OF CHEMISTRY, 2023, 47 (05) : 1183 - 1194
  • [32] Modification of TiO2 Nanotubes with PtRu/Graphene Nanocomposites for Enhanced Oxygen Reduction Reaction
    Alammari, Walaa
    Govindhan, Maduraiveeran
    Chen, Aicheng
    CHEMELECTROCHEM, 2015, 2 (12): : 2041 - 2047
  • [33] Coordination engineering of defective F and N co-doped carbon dots anchored silver nanoparticles for boosting oxygen reduction reaction
    Chu, Siyu
    Sun, Min
    Li, Zijiong
    Wang, Haiyan
    Miao, Feng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [34] Electroluminescence and photocatalytic hydrogen evolution of S,N co-doped graphene oxide quantum dots
    Cheng, Tzu-Yang
    Chou, Feng-Pai
    Huang, Sheng-Cih
    Chang, Chin-Yuan
    Wu, Tung-Kung
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3650 - 3658
  • [35] S, N Co-Doped Graphene Quantum Dots Decorated C-Doped ZnO Nanotaper Photoanodes for Solar Cells Applications
    Majumder, Tanmoy
    Dhar, Saurab
    Chakraborty, Pinak
    Debnath, Kamalesh
    Mondal, Suvra Prakash
    NANO, 2019, 14 (01)
  • [36] Fe/N co-doped mesoporous carbon nanomaterial as an efficient electrocatalyst for oxygen reduction reaction
    He, Chuansheng
    Zhang, Tingting
    Sun, Fengzhan
    Li, Changqing
    Lin, Yuqing
    ELECTROCHIMICA ACTA, 2017, 231 : 549 - 556
  • [37] N,S Co-Doped Graphene Quantum Dots for Detection of Riboflavin and Cell Imaging
    Zhang, Mengting
    Li, Xiaorong
    Xiao, Hong
    Zhao, Bin
    Bian, Wei
    NANO, 2021, 16 (11)
  • [38] Bioinspired synthesis of nitrogen/sulfur co-doped graphene as an efficient electrocatalyst for oxygen reduction reaction
    Zhang, Huanhuan
    Liu, Xiangqian
    He, Guangli
    Zhang, Xiaoxing
    Bao, Shujuan
    Hu, Weihua
    JOURNAL OF POWER SOURCES, 2015, 279 : 252 - 258
  • [39] Nitrogen-doped carbon quantum dots decorated on platinum catalysts for improved oxygen reduction reaction
    Jo, Hyun-Gi
    Kim, Kue-Ho
    Ahn, Hyo-Jin
    APPLIED SURFACE SCIENCE, 2021, 554
  • [40] Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water
    Kuvarega, Alex T.
    Krause, Rui W. M.
    Mamba, Bhekie B.
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (04)