COMPARING POWERS AND SYMBOLIC POWERS OF IDEALS

被引:133
作者
Bocci, Cristiano [1 ]
Harbourne, Brian [2 ]
机构
[1] Univ Siena, Dipartimento Sci Matemat & Informat R Magari, I-53100 Siena, Italy
[2] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
关键词
SESHADRI CONSTANTS; ASYMPTOTIC-BEHAVIOR; AMPLE DIVISORS; FAT POINTS; SYSTEMS; CURVES;
D O I
10.1090/S1056-3911-09-00530-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop tools to study the problem of containment of symbolic powers I-(m) in powers I-r for a homogeneous ideal I in a polynomial ring k[P-N] in N + 1 variables over an arbitrary algebraically closed field k. We obtain results on the structure of the set of pairs (r, m) such that I-(m) subset of I-r. As corollaries, we show that I-2 contains I-(3) whenever S is a finite generic set of points in P-2 (thereby giving a partial answer to a question of Huneke), and we show that the containment theorems of Ein-Lazarsfeld Smith [Invent. Math. 144 (2001), pp. 241-252] and Hochster-Huneke [Invent. Math. 147 (2002), pp. 349-369] are optimal for every fixed dimension and codimension.
引用
收藏
页码:399 / 417
页数:19
相关论文
共 39 条
  • [1] ARSIE A, 2003, ANN U FERRARA, V40, P19
  • [2] Atiyah M. F., 1969, Introduction to Commutative Algebra
  • [3] Bauer T, 2009, CONTEMP MATH, V496, P33
  • [4] Constructing new ample divisors out of old ones
    Biran, P
    [J]. DUKE MATHEMATICAL JOURNAL, 1999, 98 (01) : 113 - 135
  • [5] BOCCI C, P AM MATH S IN PRESS
  • [6] CHARDIN M, 2007, BEHAV CASTELNUOVO MU
  • [7] CHARDIN M, 2004, PREPUBLICATION I MAT, V364
  • [8] Asymptotic behavior of the length of local cohomology
    Cutkosky, SD
    Hà, HT
    Srinivasan, H
    Theodorescu, E
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06): : 1178 - 1192
  • [9] SINGULAR HERMITIAN METRICS ON POSITIVE LINE BUNDLES
    DEMAILLY, JP
    [J]. LECTURE NOTES IN MATHEMATICS, 1992, 1507 : 87 - 104
  • [10] Uniform bounds and symbolic powers on smooth varieties
    Ein, L
    Lazarsfeld, R
    Smith, KE
    [J]. INVENTIONES MATHEMATICAE, 2001, 144 (02) : 241 - 252