The quantum anharmonic oscillator and quasi-exactly solvable Bose systems

被引:12
作者
Dolya, SN
Zaslavskii, OB
机构
[1] B Verkin Inst Low Temp Phys & Engn, UA-61164 Kharkov, Ukraine
[2] VN Karazins Natl Univ, Dept Phys, UA-61077 Kharkov, Ukraine
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 41期
关键词
D O I
10.1088/0305-4470/33/41/102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the notion of quasi-exactly solvable (QES) models from potential ones and differential equations to Bose systems. We obtain conditions under which algebraization of part of the spectrum occurs. In some particular cases simple exact expressions for several energy levels of an anharmonic Bose oscillator are obtained explicitly. The corresponding results do not exploit perturbation theory and include the strong-coupling regime. A generic Hamiltonian under discussion cannot, in contrast to QES potential models, be expressed as a polynomial in generators of sit algebra. The suggested approach is extendable to many-particle Bose systems with interaction.
引用
收藏
页码:L369 / L374
页数:6
相关论文
共 14 条
[1]   Quasi-exactly solvable quartic potential [J].
Bender, CM ;
Boettcher, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (14) :L273-L277
[2]  
BENDER CM, 1969, PHYS REV, V184, P1232
[3]   GENERAL THEORY OF SPIN-WAVE INTERACTIONS [J].
DYSON, FJ .
PHYSICAL REVIEW, 1956, 102 (05) :1217-1230
[4]  
Kleinert H, 1990, PATH INTEGRALS QUANT
[5]  
Maleev S. V., 1957, ZH EKSP TEOR FIZ, V33, P1010
[6]   On algebraic classification of Hermitian quasi-exactly solvable matrix Schrodinger operators on line [J].
Spichak, S ;
Zhdanov, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (20) :3815-3831
[7]   SPECTRAL SINGULARITIES AND QUASI-EXACTLY SOLVABLE QUANTAL PROBLEM [J].
TURBINER, AV ;
USHVERIDZE, AG .
PHYSICS LETTERS A, 1987, 126 (03) :181-183
[8]  
TURBINER AV, 1997, QALG9710012
[9]  
TURBINER AV, 1994, CONT MATH, V16
[10]   NEW METHODS IN THE THEORY OF QUANTUM SPIN SYSTEMS [J].
ULYANOV, VV ;
ZASLAVSKII, OB .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 216 (04) :179-251