On two intrinsic length scales in polymer physics:: Topological constraints vs. entanglement length

被引:49
作者
Müller, M
Wittmer, JP
Barrat, JL
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] Univ Lyon 1, Dept Phys Mat, F-69622 Villeurbanne, France
[3] CNRS, F-69622 Villeurbanne, France
来源
EUROPHYSICS LETTERS | 2000年 / 52卷 / 04期
关键词
D O I
10.1209/epl/i2000-00452-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interplay of topological constraints, excluded-volume interactions, persistence length and dynamical entanglement length in solutions and melts of linear chains and rin polymers is investigated by means of kinetic Monte Carlo simulations of a three-dimensional lattice model. In unknotted and unconcatenated rings, topological constraints manifest them selves in the static properties above a typical length scale d(t) similar to 1/rootl phi (phi being the volume fraction, l the mean bond length). Although one might expect that the same topological length will play a role in the dynamics of entangled polymers, we show that this is not the case. Instead, a different intrinsic length de, which scales like excluded-volume blob size xi, governs the scaling of the dynamical properties of both linear chains and rings. In contrast to d(t), d(e) has a strong dependence on the chain stiffness. The latter property enables us to study the full crossover scaling in dynamical properties, up to strongly entangled polymers. In agreement with experiment the scaling functions of both architectures are found to be very similar.
引用
收藏
页码:406 / 412
页数:7
相关论文
共 17 条
[1]   Computer simulation study of the structure and dynamics of ring polymers [J].
Brown, S ;
Szamel, G .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (14) :6184-6192
[2]   THE BOND FLUCTUATION METHOD - A NEW EFFECTIVE ALGORITHM FOR THE DYNAMICS OF POLYMERS IN ALL SPATIAL DIMENSIONS [J].
CARMESIN, I ;
KREMER, K .
MACROMOLECULES, 1988, 21 (09) :2819-2823
[3]   CONJECTURES ON THE STATISTICS OF RING POLYMERS [J].
CATES, ME ;
DEUTSCH, JM .
JOURNAL DE PHYSIQUE, 1986, 47 (12) :2121-2128
[4]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[5]  
Doi M., 1986, The Theory of Polymer Dynamics
[6]   Segment motion in the reptation model of polymer dynamics. I. Analytical investigation [J].
Ebert, U ;
Schafer, L ;
Baumgartner, A .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1325-1373
[7]  
EDERLE Y, 1999, MAT SCI TECHNOLOGY C, P622
[8]  
FALLER R, CONDMAT0005192
[9]   Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights [J].
Fetters, LJ ;
Lohse, DJ ;
Milner, ST ;
Graessley, WW .
MACROMOLECULES, 1999, 32 (20) :6847-6851
[10]  
KREMER K, 1995, MONTE CARLO MOL DYNA