The electrophoresis of a charged soft particle with charged rigid core is considered under a weak imposed field condition. The rigid core of the soft particle is considered to have a finite dielectric permittivity and a fixed volume charge density. The electric potential distribution is determined by solving the Poisson-Boltzman equation out side the rigid core and a Poisson equation within the core along with continuity conditions on the core-shell interface. We have extended the analytic expression of Ohshima (Electrophoresis 27:526-533, 2006) for the electrophoretic mobility of a soft particle with a charged shell to include the effect of the volume charge density of the rigid core. Mobility based on the present expression matches exactly with the existing analytical solutions for a soft particle with an uncharged core. We have also made a comparison of our solution for mobility with an uncharged rigid core with the existing experimental results. The impact of the core charge density on the soft particle mobility is analyzed.