共 49 条
Role of the Endoplasmic Reticulum Chaperone BiP, SUN Domain Proteins, and Dynein in Altering Nuclear Morphology during Human Cytomegalovirus Infection
被引:78
作者:
Buchkovich, Nicholas J.
[1
]
Maguire, Tobi G.
[1
]
Alwine, James C.
[1
]
机构:
[1] Univ Penn, Dept Canc Biol, Cell & Mol Biol Grad Grp,Sch Med, Abramson Family Canc Res Inst, Philadelphia, PA 19104 USA
关键词:
VIRION ASSEMBLY COMPLEX;
CYTOPLASMIC DYNEIN;
ENVELOPE BREAKDOWN;
UL97;
KINASE;
LAMINA;
MEMBRANE;
GOLGI;
PHOSPHORYLATION;
REPLICATION;
COMPARTMENT;
D O I:
10.1128/JVI.00719-10
中图分类号:
Q93 [微生物学];
学科分类号:
071005 ;
100705 ;
摘要:
The process of assembly and egress of human cytomegalovirus (HCMV) virions requires significant morphological alterations of the nuclear and cytoplasmic architecture. In the studies presented we show that the nuclear periphery is dramatically altered, especially near the cytoplasmic assembly compartment, where the nuclear lamina is specifically rearranged, the outer nuclear membrane is altered, and the nucleus becomes permeable to large molecules. In addition, the tethering of the inner and outer nuclear membranes is lost during infection due to a decrease in levels of the SUN domain proteins. We previously demonstrated that the endoplasmic reticulum protein BiP functions as a component of the assembly compartment and disruption of BiP causes the loss of assembly compartment integrity. In this study we show that the depletion of BiP, and the loss of assembly compartment integrity, results in the loss of virally induced lamina rearrangement and morphology of the nucleus that is characteristic of HCMV infection. BiP functions in lamina rearrangement through its ability to affect lamin phosphorylation. Depletion of BiP and disruption of the assembly compartment result in the loss of lamin phosphorylation. The dependency of lamin phosphorylation on BiP correlates with an interaction between BiP and UL50. Finally, we confirm previous data (S. V. Indran, M. E. Ballestas, and W. J. Britt, J. Virol. 84:3162-3177, 2010) suggesting an involvement of dynein in assembly compartment formation and extend this observation by showing that when dynein is inhibited, the nuclear morphology characteristic of an HCMV infection is lost. Our data suggest a highly integrated assembly-egress continuum.
引用
收藏
页码:7005 / 7017
页数:13
相关论文