Long-Range Ordering Effects in Magnetic Nanoparticles

被引:26
作者
Myrovali, Eirini [1 ,2 ]
Papadopoulos, Kyrillos [1 ,2 ]
Iglesias, Irene [3 ,4 ]
Spasova, Marina [3 ,4 ]
Farle, Michael [3 ,4 ]
Wiedwald, Ulf [3 ,4 ]
Angelakeris, Makis [1 ,2 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Phys, Thessaloniki 54124, Greece
[2] CIRI AUTH, Magnet Nanostruct Characterizat Technol & Applica, Thessaloniki 57001, Greece
[3] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany
[4] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47048 Duisburg, Germany
关键词
magnetic nanoparticles; nanomagnetism; dipolar interactions; magnetic particle hyperthermia; nanoparticle arrays; self-assembly; IRON-OXIDE NANOPARTICLES; MAGNETOTACTIC BACTERIA; DIPOLAR INTERACTIONS; HEAT-GENERATION; HYPERTHERMIA; CLUSTERS; CHAINS; MAGNETOSOMES; ARRANGEMENT; ASSEMBLIES;
D O I
10.1021/acsami.1c01820
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.
引用
收藏
页码:21602 / 21612
页数:11
相关论文
共 50 条
[31]   Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry [J].
Soares, Guilherme A. ;
Faria, Joao V. C. ;
Pinto, Leonardo A. ;
Prospero, Andre G. ;
Pereira, Gabriele M. ;
Stoppa, Erick G. ;
Buranello, Lais P. ;
Bakuzis, Andris F. ;
Baffa, Oswaldo ;
Miranda, Jose R. A. .
MATERIALS, 2022, 15 (06)
[32]   The longest edge in discrete and continuous long-range percolation [J].
Rousselle, Arnaud ;
Soenmez, Ercan .
EXTREMES, 2024, 27 (04) :673-703
[33]   Trapping of a Conducting Nanoparticle by Long-Range Surface Forces [J].
Inui, Norio ;
Mochiji, Kozo ;
Moritani, Kousuke .
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2011, 9 :301-305
[34]   Sharp asymptotic for the chemical distance in long-range percolation [J].
Biskup, Marek ;
Lin, Jeffrey .
RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (03) :560-583
[35]   Suppression of low temperature magnetic ordering in samarium nanoparticles [J].
Baker, Alexander A. ;
Lee, Jonathan R., I ;
Orme, Christine A. ;
van Buuren, Tony ;
McCall, Scott K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (49)
[36]   The collective ordering of magnetic nanoparticles in a nematic liquid crystal [J].
Lackova, Veronika ;
Schroer, Martin A. ;
Haehsler, Martin ;
Zakutanska, Katarina ;
Behrens, Silke ;
Kopcansky, Peter ;
Tomasovicova, Natalia .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 589
[37]   Long-range wall perturbations in dense granulr flows [J].
Rognon, Pierre G. ;
Miller, Thomas ;
Metzger, Bloen ;
Einav, Itai .
JOURNAL OF FLUID MECHANICS, 2015, 764 :171-192
[38]   Principles of Magnetic Hyperthermia: A Focus on Using Multifunctional Hybrid Magnetic Nanoparticles [J].
Obaidat, Ihab M. ;
Narayanaswamy, Venkatesha ;
Alaabed, Sulaiman ;
Sambasivam, Sangaraju ;
Gopi, Chandu V. V. Muralee .
MAGNETOCHEMISTRY, 2019, 5 (04)
[39]   CA and/or EDTA functionalized magnetic iron oxide nanoparticles by oxidative precipitation from FeCl2 solution: structural and magnetic study [J].
Milic, Mirjana M. ;
Orsini, Natasa Jovic ;
Markovic, Smilja .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (02)
[40]   Aggregation effects on the magnetic properties of iron oxide colloids [J].
Gutierrez, Lucia ;
de la Cueva, Leonor ;
Moros, Maria ;
Mazario, Eva ;
de Bernardo, Sara ;
de la Fuente, Jesus M. ;
Puerto Morales, M. ;
Salas, Gorka .
NANOTECHNOLOGY, 2019, 30 (11)