Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation

被引:28
|
作者
Ren, Jincheng [1 ]
Long, Xiaonian [2 ,3 ,4 ]
Mao, Shipeng [2 ,3 ,4 ]
Zhang, Jiwei [5 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[5] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion-wave equation; Finite element method; Fully discrete scheme; Error estimate; NUMERICAL APPROXIMATION; SPACE; SUBDIFFUSION;
D O I
10.1007/s10915-017-0385-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the error estimates of fully discrete finite element approximation for the time fractional diffusion-wave equation are discussed. Based on the standard Galerkin finite element method approach for the spatial discretization and the L1 formula for the approximation of the time fractional derivative, the fully discrete scheme for solving the constant coefficient fractional diffusion-wave equation is obtained and the superconvergence estimate is proposed and analyzed. Further, a fully discrete finite element scheme is presented for solving the variable coefficient fractional diffusion-wave equation and the corresponding error estimates are also established. Finally, numerical experiments are included to support the theoretical results.
引用
收藏
页码:917 / 935
页数:19
相关论文
共 50 条
  • [21] Fractional-order diffusion-wave equation
    ElSayed, AMA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322
  • [22] A fast element-free Galerkin method for the fractional diffusion-wave equation
    Li, Xiaolin
    Li, Shuling
    APPLIED MATHEMATICS LETTERS, 2021, 122
  • [23] A novel finite difference discrete scheme for the time fractional diffusion-wave equation
    Liu, Zhengguang
    Cheng, Aijie
    Li, Xiaoli
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 17 - 30
  • [24] Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation
    Li, Limei
    Xu, Da
    Luo, Man
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 : 471 - 485
  • [25] Analysis of two Legendre spectral approximations for the variable-coefficient fractional diffusion-wave equation
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Jiang, Lihua
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [26] Analysis of two Legendre spectral approximations for the variable-coefficient fractional diffusion-wave equation
    Wenping Chen
    Shujuan Lü
    Hu Chen
    Lihua Jiang
    Advances in Difference Equations, 2019
  • [27] Backward problems in time for fractional diffusion-wave equation
    Floridia, G.
    Yamamoto, M.
    INVERSE PROBLEMS, 2020, 36 (12)
  • [28] Wavelets method for the time fractional diffusion-wave equation
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    PHYSICS LETTERS A, 2015, 379 (03) : 71 - 76
  • [29] The fundamental solution of a diffusion-wave equation of fractional order
    Pskhu, A. V.
    IZVESTIYA MATHEMATICS, 2009, 73 (02) : 351 - 392
  • [30] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007