Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation

被引:28
|
作者
Ren, Jincheng [1 ]
Long, Xiaonian [2 ,3 ,4 ]
Mao, Shipeng [2 ,3 ,4 ]
Zhang, Jiwei [5 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Henan, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100190, Peoples R China
[5] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion-wave equation; Finite element method; Fully discrete scheme; Error estimate; NUMERICAL APPROXIMATION; SPACE; SUBDIFFUSION;
D O I
10.1007/s10915-017-0385-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the error estimates of fully discrete finite element approximation for the time fractional diffusion-wave equation are discussed. Based on the standard Galerkin finite element method approach for the spatial discretization and the L1 formula for the approximation of the time fractional derivative, the fully discrete scheme for solving the constant coefficient fractional diffusion-wave equation is obtained and the superconvergence estimate is proposed and analyzed. Further, a fully discrete finite element scheme is presented for solving the variable coefficient fractional diffusion-wave equation and the corresponding error estimates are also established. Finally, numerical experiments are included to support the theoretical results.
引用
收藏
页码:917 / 935
页数:19
相关论文
共 50 条
  • [1] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Jincheng Ren
    Xiaonian Long
    Shipeng Mao
    Jiwei Zhang
    Journal of Scientific Computing, 2017, 72 : 917 - 935
  • [2] A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2903 - 2914
  • [3] A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations
    Esen, Alaattin
    Ucar, Yusuf
    Yagmurlu, Nuri
    Tasbozan, Orkun
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 260 - 273
  • [4] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720
  • [5] The Finite Element Approximations for Space Fractional Diffusion Equation
    Cao, Junying
    Wang, Ziqiang
    2014 IEEE WORKSHOP ON ELECTRONICS, COMPUTER AND APPLICATIONS, 2014, : 805 - 808
  • [6] SOLVING FRACTIONAL DIFFUSION AND FRACTIONAL DIFFUSION-WAVE EQUATIONS BY PETROV-GALERKIN FINITE ELEMENT METHOD
    Esen, A.
    Ucar, Y.
    Yagmurlu, M.
    Tasbozan, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (02): : 155 - 168
  • [7] The time discontinuous space-time finite element method for fractional diffusion-wave equation
    Zheng, Yunying
    Zhao, Zhengang
    APPLIED NUMERICAL MATHEMATICS, 2020, 150 (150) : 105 - 116
  • [8] A fast element-free Galerkin method for the fractional diffusion-wave equation
    Li, Xiaolin
    Li, Shuling
    APPLIED MATHEMATICS LETTERS, 2021, 122
  • [9] Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation
    Li, Limei
    Xu, Da
    Luo, Man
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 255 : 471 - 485
  • [10] Analysis of two Legendre spectral approximations for the variable-coefficient fractional diffusion-wave equation
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Jiang, Lihua
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)