共 29 条
Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway
被引:210
作者:
Blondeau, F
Laporte, J
Bodin, S
Superti-Furga, G
Payrastre, B
Mandel, JL
机构:
[1] ULP, INSERM, CNRS, Inst Genet & Biol Mol & Cellulaire, F-67404 Illkirch Graffenstaden, CU Strasbourg, France
[2] CHU Purpan, INSERM, U326, F-31059 Toulouse, France
[3] European Mol Biol Lab, D-69117 Heidelberg, Germany
关键词:
D O I:
10.1093/oxfordjournals.hmg.a018913
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Myotubular myopathy (MTM1) is an X-linked disease, characterized by severe neonatal hypotonia and generalized muscle weakness, with pathological features suggesting an impairment in maturation of muscle fibres, The MTM1 gene encodes a protein (myotubularin) with a phosphotyrosine phosphatase consensus. It defines a family of at least nine genes in man, including the antiphosphatase hMTMR5/Sbf1 and hMTMR2, recently found mutated in a recessive form of Charcot-Marie-Tooth disease. Myotubularin shows a dual specificity protein phosphatase activity in vitro. We have performed an in vivo test of tyrosine phosphatase activity in Schizosaccharomyces pombe, indicating that myotubularin does not have a broad specificity tyrosine phosphatase activity. Expression of active human myotubularin inhibited growth of S.pombe and induced a vacuolar phenotype similar to that of mutants of the vacuolar protein sorting (VPS) pathway and notably of mutants of VPS34, a phosphatidylinositol 3-kinase (PI3K). In S.pombe cells deleted for the endogenous MTM homologous gene, expression of human myotubularin decreased the level of phosphatidylinositol 3-phosphate (P13P). We have created a substrate trap mutant which shows relocalization to plasma membrane projections (spikes) in HeLa cells and was inactive in the S.pombe assay. This mutant, but not the wild-type or a phosphatase site mutant, was able to immunoprecipitate a VPS34 kinase activity. Wild-type myotubularin was also able to directly dephosphorylate P13P and P14P in vitro. Myotubularin may thus decrease P13P levels by down-regulating PI3K activity and by directly degrading P13P.
引用
收藏
页码:2223 / 2229
页数:7
相关论文