Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway

被引:210
作者
Blondeau, F
Laporte, J
Bodin, S
Superti-Furga, G
Payrastre, B
Mandel, JL
机构
[1] ULP, INSERM, CNRS, Inst Genet & Biol Mol & Cellulaire, F-67404 Illkirch Graffenstaden, CU Strasbourg, France
[2] CHU Purpan, INSERM, U326, F-31059 Toulouse, France
[3] European Mol Biol Lab, D-69117 Heidelberg, Germany
关键词
D O I
10.1093/oxfordjournals.hmg.a018913
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myotubular myopathy (MTM1) is an X-linked disease, characterized by severe neonatal hypotonia and generalized muscle weakness, with pathological features suggesting an impairment in maturation of muscle fibres, The MTM1 gene encodes a protein (myotubularin) with a phosphotyrosine phosphatase consensus. It defines a family of at least nine genes in man, including the antiphosphatase hMTMR5/Sbf1 and hMTMR2, recently found mutated in a recessive form of Charcot-Marie-Tooth disease. Myotubularin shows a dual specificity protein phosphatase activity in vitro. We have performed an in vivo test of tyrosine phosphatase activity in Schizosaccharomyces pombe, indicating that myotubularin does not have a broad specificity tyrosine phosphatase activity. Expression of active human myotubularin inhibited growth of S.pombe and induced a vacuolar phenotype similar to that of mutants of the vacuolar protein sorting (VPS) pathway and notably of mutants of VPS34, a phosphatidylinositol 3-kinase (PI3K). In S.pombe cells deleted for the endogenous MTM homologous gene, expression of human myotubularin decreased the level of phosphatidylinositol 3-phosphate (P13P). We have created a substrate trap mutant which shows relocalization to plasma membrane projections (spikes) in HeLa cells and was inactive in the S.pombe assay. This mutant, but not the wild-type or a phosphatase site mutant, was able to immunoprecipitate a VPS34 kinase activity. Wild-type myotubularin was also able to directly dephosphorylate P13P and P14P in vitro. Myotubularin may thus decrease P13P levels by down-regulating PI3K activity and by directly degrading P13P.
引用
收藏
页码:2223 / 2229
页数:7
相关论文
共 29 条
[1]   Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2 [J].
Bolino, A ;
Muglia, M ;
Conforti, FL ;
LeGuern, E ;
Salih, MAM ;
Georgiou, DM ;
Christodoulou, K ;
Hausmanowa-Petrusewicz, I ;
Mandich, P ;
Schenone, A ;
Gambardella, A ;
Bono, F ;
Quattrone, A ;
Devoto, M ;
Monaco, AP .
NATURE GENETICS, 2000, 25 (01) :17-19
[2]   Insulin activates the α isoform of class II phosphoinositide 3-kinase [J].
Brown, RA ;
Domino, J ;
Arcaro, A ;
Waterfield, MD ;
Shepherd, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :14529-14532
[3]   Association of SET domain and myotubularin-related proteins modulates growth control [J].
Cui, XM ;
De Vivo, I ;
Slany, R ;
Miyamoto, A ;
Firestein, R ;
Cleary, ML .
NATURE GENETICS, 1998, 18 (04) :331-337
[4]   Form and function in protein dephosphorylation [J].
Denu, JM ;
Stuckey, JA ;
Saper, MA ;
Dixon, JE .
CELL, 1996, 87 (03) :361-364
[5]   The multiple roles of PTEN in tumor suppression [J].
Di Cristofano, A ;
Pandolfi, PP .
CELL, 2000, 100 (04) :387-390
[6]   ISOLATION OF MONOCLONAL-ANTIBODIES SPECIFIC FOR HUMAN C-MYC PROTO-ONCOGENE PRODUCT [J].
EVAN, GI ;
LEWIS, GK ;
RAMSAY, G ;
BISHOP, JM .
MOLECULAR AND CELLULAR BIOLOGY, 1985, 5 (12) :3610-3616
[7]   Development of ''substrate-trapping'' mutants to identify physiological substrates of protein tyrosine phosphatases [J].
Flint, AJ ;
Tiganis, T ;
Barford, D ;
Tonks, NK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (05) :1680-1685
[8]   RAS-DEPENDENT INDUCTION OF CELLULAR-RESPONSES BY CONSTITUTIVELY ACTIVE PHOSPHATIDYLINOSITOL-3 KINASE [J].
HU, QJ ;
KLIPPEL, A ;
MUSLIN, AJ ;
FANTL, WJ ;
WILLIAMS, LT .
SCIENCE, 1995, 268 (5207) :100-102
[9]   A role for phosphoinositide 3-kinase in bacterial invasion [J].
Ireton, K ;
Payrastre, B ;
Chap, H ;
Ogawa, W ;
Sakaue, H ;
Kasuga, M ;
Cossart, P .
SCIENCE, 1996, 274 (5288) :780-782
[10]   Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast [J].
Isakoff, SJ ;
Cardozo, T ;
Andreev, J ;
Li, Z ;
Ferguson, KM ;
Abagyan, R ;
Lemmon, MA ;
Aronheim, A ;
Skolnik, EY .
EMBO JOURNAL, 1998, 17 (18) :5374-5387