The structural transition of the prion protein into its pathogenic conformation is induced by unmasking hydrophobic sites

被引:37
作者
Leffers, KW
Schell, J
Jansen, K
Lucassen, R
Kaimann, T
Nagel-Steger, L
Tatzelt, J
Riesner, D [2 ]
机构
[1] Biol Med Forschungszentrum, D-40225 Dusseldorf, Germany
[2] Univ Dusseldorf, Inst Biol Phys, D-40225 Dusseldorf, Germany
[3] Max Planck Inst Biochem, D-82152 Martinsried, Germany
关键词
prion; transition; chaperonin; SDS; conformation;
D O I
10.1016/j.jmb.2004.09.071
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A series of structural intermediates in the putative pathway from the cellular prion protein PrPC to the pathogenic form PrPSC was established by systematic variation of low concentrations (<0.1%) of the detergent sodium dodecyl sulfate (SDS) or by the interaction with the bacterial chaperonin GroEL. Most extended studies were carried out with recombinant PrP (90-231) corresponding to the amino acid sequence of hamster prions PrP 27-30. Similar results were obtained with full-length recombinant PrP, hamster PrP 27-30 and PrPC isolated from transgenic, non-infected CHO cells. Varying the incubation conditions, i.e. the concentration of SDS, the GroEL and GroEL/ES, but always at neutral pH and room temperature, different conformations could be established. The conformations were characterized with respect to secondary structure as determined by CD spectroscopy and to molecular mass, as determined by fluorescence correlation spectroscopy and analytical ultracentrifugation: alpha-helical monomers, soluble alpha-helical dimers, soluble but beta-structured oligomers of a minimal size of 12-14 PrP molecules, and insoluble multimers were observed. A high activation barrier was found between the alpha-helical dimers and beta-structured oligomers. The numbers of SDS-molecules bound to PrP in different conformations were determined: Partially denatured, alpha-helical monomers bind 31 SDS molecules per PrP molecule, alpha-helical dimers 21, D-structured oligomers 19-20, and beta-structured multimers show very strong binding of five SDS molecules per PrP molecule. Binding of only five molecules of SDS per molecule of PrP leads to fast formation of beta-structures followed by irreversible aggregation. It is discussed that strongest binding of SDS has an effect identical with or similar to the,interaction with GroEL thereby inducing identical or very similar transitions. The interaction with GroEL/ES stabilizes the soluble, alpha-helical conformation. The structure and their stabilities and particularly the induction of transitions by interaction of hydrophobic sites of PrP are discussed in respect to their biological relevance. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:839 / 853
页数:15
相关论文
共 57 条
[1]   Prion rods contain an inert polysaccharide scaffold [J].
Appel, TR ;
Dumpitak, C ;
Matthiesen, U ;
Riesner, D .
BIOLOGICAL CHEMISTRY, 1999, 380 (11) :1295-1306
[2]   Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes [J].
Baron, GS ;
Wehrly, K ;
Dorward, DW ;
Chesebro, B ;
Caughey, B .
EMBO JOURNAL, 2002, 21 (05) :1031-1040
[3]   Pathway complexity of prion protein assembly into amyloid [J].
Baskakov, IV ;
Legname, G ;
Baldwin, MA ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (24) :21140-21148
[4]   Folding of prion protein to its native α-helical conformation is under kinetic control [J].
Baskakov, IV ;
Legname, G ;
Prusiner, SB ;
Cohen, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :19687-19690
[5]   Prion protein expression in Chinese hamster ovary cells using a glutamine synthetase selection and amplification system [J].
Blochberger, TC ;
Cooper, C ;
Peretz, D ;
Tatzelt, J ;
Griffith, OH ;
Baldwin, MA ;
Prusiner, SB .
PROTEIN ENGINEERING, 1997, 10 (12) :1465-1473
[6]   THERMODYNAMIC ANALYSIS OF MULTICOMPONENT SOLUTIONS [J].
CASASSA, EF ;
EISENBERG, H .
ADVANCES IN PROTEIN CHEMISTRY, 1964, 19 :287-395
[7]   N-TERMINAL TRUNCATION OF THE SCRAPIE-ASSOCIATED FORM OF PRP BY LYSOSOMAL PROTEASE(S) - IMPLICATIONS REGARDING THE SITE OF CONVERSION OF PRP TO THE PROTEASE-RESISTANT STATE [J].
CAUGHEY, B ;
RAYMOND, GJ ;
ERNST, D ;
RACE, RE .
JOURNAL OF VIROLOGY, 1991, 65 (12) :6597-6603
[8]   SECONDARY STRUCTURE-ANALYSIS OF THE SCRAPIE-ASSOCIATED PROTEIN PRP 27-30 IN WATER BY INFRARED-SPECTROSCOPY [J].
CAUGHEY, BW ;
DONG, A ;
BHAT, KS ;
ERNST, D ;
HAYES, SF ;
CAUGHEY, WS .
BIOCHEMISTRY, 1991, 30 (31) :7672-7680
[9]   STRUCTURAL CLUES TO PRION REPLICATION [J].
COHEN, FE ;
PAN, KM ;
HUANG, Z ;
BALDWIN, M ;
FLETTERICK, RJ ;
PRUSINER, SB .
SCIENCE, 1994, 264 (5158) :530-531
[10]   Pathologic conformations of prion proteins [J].
Cohen, FE ;
Prusiner, SB .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :793-+