EVOLVING CONVEX CURVES TO CONSTANT-WIDTH ONES BY A PERIMETER-PRESERVING FLOW

被引:7
|
作者
Gao, Laiyuan [1 ]
Pan, Shengliang [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
convex curves; curves of constant width; perimeter-preserving curve flow; EVOLUTION PROBLEM;
D O I
10.2140/pjm.2014.272.131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with a curve evolution problem which, if the curvature of the initial convex curve satisfies a certain pinching condition, keeps the convexity and preserves the perimeter, while increasing the enclosed area of the evolving curve, and which leads to a limiting curve of constant width. In particular, under this flow the limiting curve is a circle if and only if the initial convex curve is centrosymmetric.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 28 条
  • [1] Evolving convex curves to constant k-order width ones by a perimeter-preserving flow
    Fang, Jianbo
    MANUSCRIPTA MATHEMATICA, 2018, 157 (1-2) : 247 - 256
  • [2] Evolving convex curves to constant k-order width ones by a perimeter-preserving flow
    Jianbo Fang
    manuscripta mathematica, 2018, 157 : 247 - 256
  • [3] On a perimeter-preserving crystalline flow
    Pan, Shengliang
    Zhang, Yanlong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (03) : 1944 - 1962
  • [4] Evolving convex surfaces to constant width ones
    Gao, Laiyuan
    Zhang, Yuntao
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (11)
  • [5] On a perimeter-preserving plane curve flow
    Pan S.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (4) : 409 - 417
  • [6] ON A PERIMETER-PRESERVING PLANE CURVE FLOW
    Pan ShengliangDept. of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2001, (04) : 409 - 417
  • [7] On a non-local perimeter-preserving curve evolution problem for convex plane curves
    Shengliang Pan
    Juanna Yang
    manuscripta mathematica, 2008, 127 : 469 - 484
  • [8] On a non-local perimeter-preserving curve evolution problem for convex plane curves
    Pan, Shengliang
    Yang, Juanna
    MANUSCRIPTA MATHEMATICA, 2008, 127 (04) : 469 - 484
  • [9] Flow separation at the inner (convex) and outer (concave) banks of constant-width and widening open-channel bends
    Blanckaert, Koen
    Kleinhans, Maarten G.
    McLelland, Stuart J.
    Uijttewaal, Wim S. J.
    Murphy, Brendan J.
    van de Kruijs, Anja
    Parsons, Daniel R.
    Chen, Qiuwen
    EARTH SURFACE PROCESSES AND LANDFORMS, 2013, 38 (07) : 696 - 716
  • [10] REMARKS ON CLOSED CONVEX CURVES OF CONSTANT WIDTH
    BARTON, B
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (07): : 827 - &