Coreless vorticity in multicomponent Bose and Fermi superfluids

被引:23
作者
Catelani, G. [1 ]
Yuzbashyan, E. A. [1 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Ctr Mat Theory, Piscataway, NJ 08854 USA
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 03期
基金
美国国家科学基金会;
关键词
VORTEX LINE; EQUATIONS; STATES;
D O I
10.1103/PhysRevA.81.033629
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider quantized vortices in two-component Bose-Einstein condensates and three-component Fermi gases with attractive interactions. In these systems, the vortex core can be either empty (normal in the fermion case) or filled with another superfluid. We determine critical values of the parameters-chemical potentials, scattering lengths, and, for Fermi gases, temperature-at which the transition between the two types of vortices occurs. Population imbalance can lead to superfluid core (coreless) vorticity in multicomponent superfluids which otherwise support only usual vortices. For multicomponent Fermi gases, we construct the phase diagram, including regions of coreless vorticity. We extend our results to trapped bosons and fermions using an appropriate local approximation, which goes beyond the usual Thomas-Fermi approximation for trapped bosons.
引用
收藏
页数:7
相关论文
共 33 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]   Vortex precession in Bose-Einstein condensates: Observations with filled and empty cores [J].
Anderson, BP ;
Haljan, PC ;
Wieman, CE ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2000, 85 (14) :2857-2860
[3]   Direct, nondestructive observation of a bose condensate [J].
Andrews, MR ;
Mewes, MO ;
vanDruten, NJ ;
Durfee, DS ;
Kurn, DM ;
Ketterle, W .
SCIENCE, 1996, 273 (5271) :84-87
[4]   Semisuperfluid strings in high density QCD [J].
Balachandran, AP ;
Digal, S ;
Matsuura, T .
PHYSICAL REVIEW D, 2006, 73 (07)
[5]   Boundary of two mixed Bose-Einstein condensates [J].
Barankov, RA .
PHYSICAL REVIEW A, 2002, 66 (01) :6
[6]   Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation [J].
Berloff, NG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1617-1632
[7]   An analytical approximation scheme to two-point boundary value problems of ordinary differential equations [J].
Boisseau, Bruno ;
Forgacs, Peter ;
Giacomini, Hector .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (09) :F215-F221
[8]   BOUND FERMION STATES ON A VORTEX LINE IN A TYPE-II SUPERCONDUCTOR [J].
CAROLI, C ;
DEGENNES, PG ;
MATRICON, J .
PHYSICS LETTERS, 1964, 9 (04) :307-309
[9]   Phase diagram, extended domain walls, and soft collective modes in a three-component fermionic superfluid [J].
Catelani, G. ;
Yuzbashyan, E. A. .
PHYSICAL REVIEW A, 2008, 78 (03)
[10]   Phase separation and vortex states in the binary mixture of Bose-Einstein condensates [J].
Chui, ST ;
Ryzhov, VN ;
Tareyeva, EE .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 91 (06) :1183-1189