Coreless vorticity in multicomponent Bose and Fermi superfluids

被引:21
作者
Catelani, G. [1 ]
Yuzbashyan, E. A. [1 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Ctr Mat Theory, Piscataway, NJ 08854 USA
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 03期
基金
美国国家科学基金会;
关键词
VORTEX LINE; EQUATIONS; STATES;
D O I
10.1103/PhysRevA.81.033629
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider quantized vortices in two-component Bose-Einstein condensates and three-component Fermi gases with attractive interactions. In these systems, the vortex core can be either empty (normal in the fermion case) or filled with another superfluid. We determine critical values of the parameters-chemical potentials, scattering lengths, and, for Fermi gases, temperature-at which the transition between the two types of vortices occurs. Population imbalance can lead to superfluid core (coreless) vorticity in multicomponent superfluids which otherwise support only usual vortices. For multicomponent Fermi gases, we construct the phase diagram, including regions of coreless vorticity. We extend our results to trapped bosons and fermions using an appropriate local approximation, which goes beyond the usual Thomas-Fermi approximation for trapped bosons.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
  • [2] Vortex precession in Bose-Einstein condensates: Observations with filled and empty cores
    Anderson, BP
    Haljan, PC
    Wieman, CE
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (14) : 2857 - 2860
  • [3] Direct, nondestructive observation of a bose condensate
    Andrews, MR
    Mewes, MO
    vanDruten, NJ
    Durfee, DS
    Kurn, DM
    Ketterle, W
    [J]. SCIENCE, 1996, 273 (5271) : 84 - 87
  • [4] Semisuperfluid strings in high density QCD
    Balachandran, AP
    Digal, S
    Matsuura, T
    [J]. PHYSICAL REVIEW D, 2006, 73 (07):
  • [5] Boundary of two mixed Bose-Einstein condensates
    Barankov, RA
    [J]. PHYSICAL REVIEW A, 2002, 66 (01): : 6
  • [6] Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation
    Berloff, NG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05): : 1617 - 1632
  • [7] An analytical approximation scheme to two-point boundary value problems of ordinary differential equations
    Boisseau, Bruno
    Forgacs, Peter
    Giacomini, Hector
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (09) : F215 - F221
  • [8] BOUND FERMION STATES ON A VORTEX LINE IN A TYPE-II SUPERCONDUCTOR
    CAROLI, C
    DEGENNES, PG
    MATRICON, J
    [J]. PHYSICS LETTERS, 1964, 9 (04): : 307 - 309
  • [9] Phase diagram, extended domain walls, and soft collective modes in a three-component fermionic superfluid
    Catelani, G.
    Yuzbashyan, E. A.
    [J]. PHYSICAL REVIEW A, 2008, 78 (03):
  • [10] Phase separation and vortex states in the binary mixture of Bose-Einstein condensates
    Chui, ST
    Ryzhov, VN
    Tareyeva, EE
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 91 (06) : 1183 - 1189