The lack of nitrogen (N) input on pastures is the main limiting factor to increase animal performance in tropical regions. This 2.5-year study assessed animal performance, forage intake and digestion, and N metabolism responses of three pasture treatments: (1) mixed Marandu palisadegrass-Brachiaria brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Urochloa brizantha Stapf cv. Marandu)-and forage peanut (Arachis pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (GRASS + LEGUME), (2) monoculture Marandu palisadegrass pastures with 150 kg of N/ha (GRASS + N), and (3) monoculture Marandu palisadegrass without N fertilizer (GRASS). Continuous stocking with variable stocking rate was used with a target canopy height of 20 to 25 cm. The average daily gain was greatest at GRASS + N and GRASS + LEGUME (p = .081). GRASS + N pasture had greatest stocking rate and liveweight gain per area (p p < .001, respectively), followed by GRASS + LEGUME pasture. No differences between treatments were found for the dry matter forage intake (p = .729); however, GRASS + N and GRASS + LEGUME pastures had greater crude protein and digestible organic matter intakes than GRASS pasture (p = .007 and p = .083, respectively). Greatest microbial protein synthesis and efficiency of microbial synthesis were found for GRASS + N and GRASS + LEGUME pastures (p = .016 and p = .067, respectively). Apparent efficiency of N utilization and microbial protein/CP intake ratio was greatest at GRASS + LEGUME pastures (p = .009 and p = .042, respectively). Nitrogen application or the integration of forage peanut in grass pasture increases animal performance, forage digestibility, and microbial protein synthesis.