On the Reversibility and Fragility of Sodium Metal Electrodes

被引:66
作者
Deng, Yue [1 ]
Zheng, Jingxu [1 ]
Warren, Alexander [2 ]
Yin, Jiefu [3 ]
Choudhury, Snehashis [2 ]
Biswal, Prayag [2 ]
Zhang, Duhan [4 ]
Archer, Lynden A. [2 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Cornell Energy Syst Inst, Ithaca, NY 14853 USA
[4] Cornell Univ, Dept Mech Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
dendritic electrodeposition; energy storage; hybrid anodes; sodium metal batteries; LITHIUM;
D O I
10.1002/aenm.201901651
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metallic sodium is receiving renewed interest as a battery anode material because the metal is earth-abundant, inexpensive, and offers a high specific storage capacity (1166 mAh g(-1) at -2.71 V vs the standard hydrogen potential). Unlike metallic lithium, the case for Na as the anode in rechargeable batteries has already been demonstrated on a commercial scale in high-temperature Na||S and Na||NiCl2 secondary batteries, which increases interest. The reversibility of room temperature sodium anodes is investigated in galvanostatic plating/stripping reactions using in situ optical visualization and galvanostatic polarization measurements. It is discovered that electronic disconnection of mossy metallic Na deposits ("orphaning") is a dominant source of anode irreversibility in liquid electrolytes. The disconnection is shown by means of direct visualization studies to be triggered by a root-breakage process during the stripping cycle. As a further step toward electrode designs that are able to accommodate the fragile Na deposits, electrodeposition of Na is demonstrated in nonplanar electrode architectures, which provide continuous and morphology agnostic access to the metal at all stages of electrochemical cycling. On this basis, nonplanar Na electrodes are reported, which exhibit exceptionally high levels of reversibility (Coulombic efficiency >99.6% for 1 mAh cm(-2) Na throughput) in room-temperature, liquid electrolytes.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 2019, LEV COST LEV AV COST
[2]   A Highly Stable Sodium-Oxygen Battery Using a Mechanically Reinforced Membrane [J].
Ansari, Younes ;
Virwani, Kumar ;
Yahyazadeh, Sogol ;
Thompson, Leslie E. ;
Lofano, Elizabeth ;
Fong, Anthony ;
Miller, Robert D. ;
La, Young-Hye .
ADVANCED ENERGY MATERIALS, 2018, 8 (36)
[3]   On the Thermodynamics, the Role of the Carbon Cathode, and the Cycle Life of the Sodium Superoxide (NaO2) Battery [J].
Bender, Conrad L. ;
Hartmann, Pascal ;
Vracar, Milos ;
Adelhelm, Philipp ;
Janek, Juergen .
ADVANCED ENERGY MATERIALS, 2014, 4 (12)
[4]   Progress and Future Perspectives on Li(Na)-CO2 Batteries [J].
Cai, Fengshi ;
Hu, Zhe ;
Chou, Shu-Lei .
ADVANCED SUSTAINABLE SYSTEMS, 2018, 2 (8-9)
[5]   Lowering the Bar on Battery Cost [J].
Chiang, Yet-Ming ;
Su, Liang ;
Pan, Mengshuan Sam ;
Li, Zheng .
JOULE, 2017, 1 (02) :213-219
[6]   Designing solid-liquid interphases for sodium batteries [J].
Choudhury, Snehashis ;
Wei, Shuya ;
Ozhabes, Yalcin ;
Gunceler, Deniz ;
Zachman, Michael J. ;
Tu, Zhengyuan ;
Shin, Jung Hwan ;
Nath, Pooja ;
Agrawal, Akanksha ;
Kourkoutis, Lena F. ;
Arias, Tomas A. ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2017, 8
[7]  
Hartmann P, 2013, NAT MATER, V12, P228, DOI [10.1038/NMAT3486, 10.1038/nmat3486]
[8]  
Kawakami N, 2010, PROC IEEE INT SYMP, P2371, DOI 10.1109/ISIE.2010.5637487
[9]   On the Cycling Performance of Na-O2 Cells: Revealing the Impact of the Superoxide Crossover toward the Metallic Na Electrode [J].
Lin, Xiaoting ;
Sun, Qian ;
Yadegari, Hossein ;
Yang, Xiaofei ;
Zhao, Yang ;
Wang, Changhong ;
Liang, Jianneng ;
Koo, Alicia ;
Li, Ruying ;
Sun, Xueliang .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (35)
[10]  
Liu C., 2018, ACS APPL MATER INTER, V10