Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries

被引:613
作者
Zhao, Yang [1 ,2 ]
Li, Xifei [1 ]
Yan, Bo [1 ]
Xiong, Dongbin [1 ]
Li, Dejun [1 ]
Lawes, Stephen [2 ]
Sun, Xueliang [1 ,2 ]
机构
[1] Tianjin Normal Univ, Energy & Mat Engn Ctr, Coll Phys & Mat Sci, Tianjin 300387, Peoples R China
[2] Univ Western Ontario, Nanomat & Energy Lab, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
HIGH-PERFORMANCE ANODE; HIGH-CAPACITY ANODE; REDUCED GRAPHENE OXIDE; NEGATIVE-ELECTRODE MATERIALS; TEMPLATE-FREE SYNTHESIS; HOLLOW ZN2SNO4 BOXES; MESOPOROUS ZNCO2O4 MICROSPHERES; NICO2O4 NANOWIRE ARRAYS; GAS-SENSING PROPERTIES; FACILE SYNTHESIS;
D O I
10.1002/aenm.201502175
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mixed transition-metal oxides (MTMOs), including stannates, ferrites, cobaltates, and nickelates, have attracted increased attention in the application of high performance lithium-ion batteries. Compared with traditional metal oxides, MTMOs exhibit enormous potential as electrode materials in lithium-ion batteries originating from higher reversible capacity, better structural stability, and high electronic conductivity. Recent advancements in the rational design of novel MTMO micro/nanostructures for lithium-ion battery anodes are summarized and their energy storage mechanism is compared to transition-metal oxide anodes. In particular, the significant effects of the MTMO morphology, micro/nanostructure, and crystallinity on battery performance are highlighted. Furthermore, the future trends and prospects, as well as potential problems, are presented to further develop advanced MTMO anodes for more promising and large-scale commercial applications of lithium-ion batteries.
引用
收藏
页数:19
相关论文
共 252 条
[1]   Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries [J].
Ahn, Jee Hyun ;
Park, Gi Dae ;
Kang, Yun Chan ;
Lee, Jong-Heun .
ELECTROCHIMICA ACTA, 2015, 174 :102-110
[2]   Electrochemical and 119Sn Mossbauer studies of the reaction of Co2SnO4 with lithium [J].
Alcantara, Ricardo ;
Ortiz, Gregorio F. ;
Lavela, Pedro ;
Tirado, Jose L. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (05) :731-736
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   ENTHALPY OF FORMATION FOR LI2SNO3 AND COMPARISON WITH OTHER LITHIUM-CONTAINING COMPLEX OXIDES [J].
ASANO, M ;
KATO, Y ;
HARADA, T ;
MIZUTANI, Y ;
YAMAWAKI, M .
JOURNAL OF NUCLEAR MATERIALS, 1993, 201 :156-161
[6]   Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material [J].
Bai, Jing ;
Li, Xiaogang ;
Liu, Guangzeng ;
Qian, Yitai ;
Xiong, Shenglin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (20) :3012-3020
[7]   Synthesis of CuO nanostructures from Cu-based metal organic framework (MOE-199) for application as anode for Li-ion batteries [J].
Banerjee, Abhik ;
Singh, Upendra ;
Aravindan, Vanchiappan ;
Srinivasan, Madhavi ;
Ogale, Satishchandra .
NANO ENERGY, 2013, 2 (06) :1158-1163
[8]   Electrochemical insertion of lithium in mechanochemically synthesized Zn2SnO4 [J].
Becker, Sebastian M. ;
Scheuermann, Marco ;
Sepelak, Vladimir ;
Eichhoefer, Andreas ;
Chen, Di ;
Moenig, Reiner ;
Ulrich, Anne S. ;
Hahn, Horst ;
Indris, Sylvio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19624-19631
[9]   Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery [J].
Belliard, F ;
Irvine, JTS .
JOURNAL OF POWER SOURCES, 2001, 97-8 :219-222
[10]   Electrochemical Comparison Between SnO2 and Li2SnO3 Synthesized at High and Low Temperatures [J].
Belliard, F. ;
Irvine, J. T. S. .
IONICS, 2001, 7 (1-2) :16-21