A note on self-dual negacyclic codes of length ps over Fpk + uFpk

被引:0
作者
Choosuwan, Parinyawat [1 ]
Jitman, Somphong [2 ]
Udomkavanich, Patanee [3 ]
机构
[1] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Khlong Luang 12110, Pathum Thani, Thailand
[2] Silpakorn Univ, Fac Sci, Dept Math, Mueang 73000, Nakhon Pathom, Thailand
[3] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
关键词
Negacyclic codes; Self-dual codes; Codes over rings; Euclidean inner product; Hermitian inner product; CYCLIC CODES; GR(P(2); 2P(S); M);
D O I
10.1007/s40879-019-00378-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Self-dual cyclic codes over rings and their generalizations have become of interest due to their rich algebraic structures and wide applications. Cyclic and self-dual cyclic codes over the ring have been quite well studied, where p is a prime, k is a positive integer, and u2=0. We focus on negacyclic codes over , where p is an odd prime and k is a positive integer. An alternative and explicit algebraic characterization of negacyclic codes of length ps over is presented. Based on this result, representation and enumeration of self-dual negacyclic codes of length ps over are given under both the Euclidean and Hermitian inner products.
引用
收藏
页码:1424 / 1437
页数:14
相关论文
共 16 条
[11]   Negacyclic self-dual codes over finite chain rings [J].
Kai, Xiaoshan ;
Zhu, Shixin .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 62 (02) :161-174
[12]   Cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (03) :834-846
[13]   A note on cyclic codes over GR(p2, m) of length pk [J].
Kiah, Han Mao ;
Leung, Ka Hin ;
Ling, San .
DESIGNS CODES AND CRYPTOGRAPHY, 2012, 63 (01) :105-112
[14]   CYCLIC AND NEGACYCLIC CODES OF LENGTH 2ps OVER Fpm + uFpm [J].
Liu, Xiusheng ;
Xu, Xiaofang .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) :829-839
[15]   Cyclic and negacyclic codes over the Galois ring GR(p2, m) [J].
Sobhani, R. ;
Esmaeili, M. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) :2892-2903
[16]   Negacyclic and cyclic codes over Z4 [J].
Wolfmann, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2527-2532