Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data

被引:15
作者
Chen, Huyuan [1 ]
Veron, Laurent [2 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[2] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
来源
MATHEMATICS IN ENGINEERING | 2019年 / 1卷 / 03期
关键词
Leray-Hardy potential; Radon measure; capacity; weak solution; SINGULARITIES; EXISTENCE;
D O I
10.3934/mine.2019.3.391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study existence and stability of solutions of -Delta u + mu/vertical bar x vertical bar(2)u + gu = nu in Omega, u = 0 on partial derivative Omega, where Omega is a bounded, smooth domain of R-N , N >= 2, containing the origin, mu >= - (N-2)/4(2) is a constant, g is a nondecreasing function satisfying some integral growth assumption and the weak Delta(2)-condition, and v is a Radon measure in Omega. We show that the situation differs depending on whether the measure is diffuse or concentrated at the origin. When g is a power function, we introduce a capacity framework to find necessary and sufficient conditions for solvability.
引用
收藏
页码:391 / 418
页数:28
相关论文
共 32 条
[1]   ELIMINABLE SINGULARITIES FOR SEMILINEAR EQUATIONS [J].
BARAS, P ;
PIERRE, M .
ANNALES DE L INSTITUT FOURIER, 1984, 34 (01) :185-206
[2]   Nonlinear problems related to the Thomas-Fermi equation [J].
Bénilan, P ;
Brezis, H .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (04) :673-770
[3]   NONLINEAR ELLIPTIC-EQUATIONS ON COMPACT RIEMANNIAN-MANIFOLDS AND ASYMPTOTICS OF EMDEN EQUATIONS [J].
BIDAUTVERON, MF ;
VERON, L .
INVENTIONES MATHEMATICAE, 1991, 106 (03) :489-539
[4]  
Birnbaum Z., 1931, Studia Math, V3, P1, DOI [10.4064/sm-3-1-1-67, DOI 10.4064/SM-3-1-1-67]
[5]  
Boccardo L, 2006, DISCRETE CONT DYN S, V16, P513
[6]  
BREZIS H, 1980, ARCH RATION MECH AN, V75, P1
[7]  
Brezis H, 2007, ANN MATH STUD, V163, P55
[8]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[9]  
Brezis H., 1980, VARIATIONAL INEQUALI, P53
[10]   On a semilinear elliptic equation with inverse-square potential [J].
Brezis, Haim ;
Dupaigne, Louis ;
Tesei, Alberto .
SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (01) :1-7