Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices

被引:6
作者
Morana, Claudio [1 ,2 ,3 ,4 ]
机构
[1] Univ Milano Bicocca, Dipartimento Econ Metodi Quantitat & Strategie Im, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[2] Univ Milano Bicocca, Ctr European Studies CefES Italy, Piazza Ateneo Nuovo 1, I-20126 Milan, Italy
[3] Coll Carlo Alberto, Ctr Res Pens & Welf Policies CeRP Italy, Piazza Vincenzo Arbarello 8, I-10122 Turin, Italy
[4] Rimini Ctr Econ Anal RCEA Canada, 75 Univ Ave W, Waterloo, ON N2L 3C5, Canada
关键词
Conditional covariance; Dynamic conditional correlation model; Semiparametric dynamic conditional correlation model; Multivariate GARCH; NONLINEAR SHRINKAGE; MULTIVARIATE; MARGINALIZATION; AGGREGATION; MODEL;
D O I
10.1016/j.ecosta.2019.04.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
A three-step estimation strategy for dynamic conditional correlation (DCC) models is proposed. In the first step, conditional variances for individual and aggregate series are estimated by means of QML equation by equation. In the second step, conditional covariances are estimated by means of the polarization identity and conditional correlations are estimated by their usual normalization. In the third step, the two-step conditional covariance and correlation matrices are regularized by means of a new non-linear shrinkage procedure and optimally smoothed. Due to its scant computational burden, the proposed regularized semiparametric DCC model (RSP-DCC) allows to estimate high dimensional conditional covariance and correlation matrices. An application to global minimum variance portfolio is also provided, confirming that RSP-DCC is a simple and viable alternative to existing DCC models. (C) 2019 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 65
页数:24
相关论文
共 50 条
  • [1] Estimation and Forecasting of Dynamic Conditional Covariance: A Semiparametric Multivariate Model
    Long, Xiangdong
    Su, Liangjun
    Ullah, Aman
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2011, 29 (01) : 109 - 125
  • [2] Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach
    Trucios, Carlos
    Mazzeu, Joao H. G.
    Hallin, Marc
    Hotta, Luiz K.
    Valls Pereira, Pedro L.
    Zevallos, Mauricio
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 41 (01) : 40 - 52
  • [3] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [4] HIGH-DIMENSIONAL COVARIANCE MATRICES UNDER DYNAMIC VOLATILITY MODELS: ASYMPTOTICS AND SHRINKAGE ESTIMATION
    Ding, Yi
    Zheng, Xinghua
    ANNALS OF STATISTICS, 2024, 52 (03) : 1027 - 1049
  • [5] Comparing high-dimensional conditional covariance matrices: Implications for portfolio selection
    Moura, Guilherme, V
    Santos, Andre A. P.
    Ruiz, Esther
    JOURNAL OF BANKING & FINANCE, 2020, 118
  • [6] A Class of Structured High-Dimensional Dynamic Covariance Matrices
    Yang, Jin
    Lian, Heng
    Zhang, Wenyang
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, : 371 - 401
  • [7] Doubly robust semiparametric inference using regularized calibrated estimation with high-dimensional data
    Ghosh, Sat Yajit
    Tan, Zhiqiang
    BERNOULLI, 2022, 28 (03) : 1675 - 1703
  • [8] Ridge estimation of inverse covariance matrices from high-dimensional data
    van Wieringen, Wessel N.
    Peeters, Carel F. W.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 284 - 303
  • [9] Tests for High-Dimensional Covariance Matrices
    Chen, Song Xi
    Zhang, Li-Xin
    Zhong, Ping-Shou
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) : 810 - 819
  • [10] Dynamic principal component CAW models for high-dimensional realized covariance matrices
    Gribisch, Bastian
    Stollenwerk, Michael
    QUANTITATIVE FINANCE, 2020, 20 (05) : 799 - 821