Existence and uniqueness of periodic solutions for a kind of first order neutral functional differential equations with a deviating argument

被引:8
作者
Liu, Bingwen [1 ]
Huang, Lihong
机构
[1] Hunan Univ Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2007年 / 11卷 / 02期
关键词
first order; neutral; functional differential equations; deviating argument; periodic solutions; coincidence degree;
D O I
10.11650/twjm/1500404704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the first order neutral functional differential equation with a deviating argument of the form [GRAPHICS]
引用
收藏
页码:497 / 510
页数:14
相关论文
共 12 条
[1]  
[Anonymous], 1986, STABILITY FUNCTIONAL
[2]  
Burton TA., 2005, Stability and periodic solutions of ordinary and functional differential equations
[3]  
GAINES RE, 1977, COINCIDE DEGREE NONL, V568
[4]   COINCIDENCE DEGREE AND PERIODIC-SOLUTIONS OF NEUTRAL EQUATIONS [J].
HALE, JK ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :295-307
[5]  
HALE JK, 1977, THEORY FUNCTIONAL DI
[6]  
Hardy G.H., 1964, INEQUALITIES
[7]  
[刘炳文 LIU Bing Wen], 2006, [数学学报, Acta Mathematica Sinica], V49, P1347
[8]   On the existence of periodic solutions for neutral functional differential equation [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) :1285-1306
[9]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514
[10]  
[王根强 Wang Genqiang], 2004, [数学学报, Acta Mathematica Sinica], V47, P379