Intersection Types and Counting

被引:3
作者
Parys, Pawel [1 ]
机构
[1] Univ Warsaw, Warsaw, Poland
关键词
MODEL-CHECKING; CALCULUS; TREES;
D O I
10.4204/EPTCS.242.6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a new approach to the following meta-problem: given a quantitative property of trees, design a type system such that the desired property for the tree generated by an infinitary ground lambda -term corresponds to some property of a derivation of a type for this lambda -term, in this type system. Our approach is presented in the particular case of the language finiteness problem for nondeterministic higher-order recursion schemes (HORSes): given a nondeterministic HORS, decide whether the set of all finite trees generated by this HORS is finite. We give a type system such that the HORS can generate a tree of an arbitrarily large finite size if and only if in the type system we can obtain derivations that are arbitrarily large, in an appropriate sense; the latter condition can be easily decided.
引用
收藏
页码:48 / 63
页数:16
相关论文
共 19 条
[1]   On the structure of graphs in the Caucal hierarchy [J].
Blumensath, Achim .
THEORETICAL COMPUTER SCIENCE, 2008, 400 (1-3) :19-45
[2]  
Broadbent C, 2012, LECT NOTES COMPUT SC, V7392, P165, DOI 10.1007/978-3-642-31585-5_18
[3]  
Broadbent Christopher H., 2013, LIPICS, V23, P129, DOI DOI 10.4230/LIPICS.CSL.2013.129
[4]  
Clemente L, 2015, 35 IARCS ANN C FDN S, V45, P163, DOI [10.4230/LIPIcs.FSTTCS. 2015.163, DOI 10.4230/LIPICS.FSTTCS.2015.163]
[5]   The Diagonal Problem for Higher-Order Recursion Schemes is Decidable [J].
Clemente, Lorenzo ;
Parys, Pawel ;
Salvati, Sylvain ;
Walukiewicz, Igor .
PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, :96-105
[6]   FUNDAMENTAL-STUDIES - THE IO-HIERARCHIES AND OI-HIERARCHIES [J].
DAMM, W .
THEORETICAL COMPUTER SCIENCE, 1982, 20 (02) :95-207
[7]   Collapsible pushdown automata and recursion schemes [J].
Hague, M. ;
Murawski, A. S. ;
Ong, C. -H. L. ;
Serre, O. .
TWENTY-THIRD ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2008, :452-+
[8]   Unboundedness and Downward Closures of Higher-Order Pushdown Automata [J].
Hague, Matthew ;
Kochems, Jonathan ;
Ong, C. -H. Luke .
ACM SIGPLAN NOTICES, 2016, 51 (01) :151-163
[9]  
Kartzow A, 2012, LECT NOTES COMPUT SC, V7464, P566, DOI 10.1007/978-3-642-32589-2_50
[10]  
Knapik T, 2002, LECT NOTES COMPUT SC, V2303, P205