The ubiquitin-proteasome system regulates p53-mediated transcription at p21waf1 promoter

被引:56
作者
Zhu, Q.
Wani, G.
Yao, J.
Patnaik, S.
Wang, Q-E
El-Mahdy, M. A.
Praetorius-Ibba, M.
Wani, A. A. [1 ]
机构
[1] Ohio State Univ, Dept Radiol, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mol & Cellular Biochem, Columbus, OH 43210 USA
[3] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA
关键词
ubiquitin; proteasome; degradationtranscription; p53;
D O I
10.1038/sj.onc.1210191
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ubiquitin (Ub)-proteasome system (UPS) promotes the proteasomal degradation of target proteins by decorating them with Ub labels. Emerging evidence indicates a role of UPS in regulating gene transcription. In this study, we provided evidence for the involvement of UPS in the transcriptional activation function of tumor suppressor p53. We showed that both ubiquitylation and proteasomal functions are required for efficient transcription mediated by p53. Disruption of transcription by actinomycin D, 5,6-dichloro-1-beta-D-ribofuranosyl-benzimadazole or alpha-amanitin leads to accumulation of cellular p53 protein. Proteasome inhibition by MG132 increases the occupancy of p53 protein at p53-responsive p21(waf1) promoter. In addition, the Sug-1 component of 19S proteasome physically interacts with p53 in vitro and in vivo. Moreover, in response to ultraviolet-induced DNA damage, both the 19S proteasomal components, Sug1 and S1, are recruited to p21(waf1) promoter region in a kinetic pattern similar to that of p53. These results suggested that UPS positively regulates p53-mediated transcription at p21(waf1) promoter.
引用
收藏
页码:4199 / 4208
页数:10
相关论文
共 50 条
[1]   Development of the proteasome inhihitor Veleade™ (Bortezomib) [J].
Adams, J ;
Kauffman, M .
CANCER INVESTIGATION, 2004, 22 (02) :304-311
[2]   A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter [J].
Brès, V ;
Kiernan, RE ;
Linares, LK ;
Chable-Bessia, C ;
Plechakova, O ;
Tréand, C ;
Emiliani, S ;
Peloponese, JM ;
Jeang, KT ;
Coux, O ;
Scheffner, M ;
Benkirane, M .
NATURE CELL BIOLOGY, 2003, 5 (08) :754-761
[3]   p53 ubiquitination: Mdm2 and beyond [J].
Brooks, CL ;
Gu, W .
MOLECULAR CELL, 2006, 21 (03) :307-315
[4]   Control of elongation by RNA polymerase II [J].
Conaway, JW ;
Shilatifard, A ;
Dvir, A ;
Conaway, RC .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (08) :375-380
[5]   The proteasome, a novel protease regulated by multiple mechanisms [J].
DeMartino, GN ;
Slaughter, CA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22123-22126
[6]   Mechanism of transcription initiation and promoter escape by RNA polymerase II [J].
Dvir, A ;
Conaway, JW ;
Conaway, RC .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2001, 11 (02) :209-214
[7]  
El-Deiry WS, 1998, CURR TOP MICROBIOL, V227, P121
[8]   A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II [J].
Ferdous, A ;
Kodadek, T ;
Johnston, SA .
BIOCHEMISTRY, 2002, 41 (42) :12798-12805
[9]   The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II [J].
Ferdous, A ;
Gonzalez, F ;
Sun, LP ;
Kodadek, T ;
Johnston, SA .
MOLECULAR CELL, 2001, 7 (05) :981-991
[10]   THERMOLABILITY OF UBIQUITIN-ACTIVATING ENZYME FROM THE MAMMALIAN-CELL CYCLE MUTANT TS85 [J].
FINLEY, D ;
CIECHANOVER, A ;
VARSHAVSKY, A .
CELL, 1984, 37 (01) :43-55