Modelling environmental DNA data; Bayesian variable selection accounting for false positive and false negative errors

被引:43
作者
Griffin, Jim E. [1 ]
Matechou, Eleni [2 ]
Buxton, Andrew S. [2 ]
Bormpoudakis, Dimitrios [2 ]
Griffiths, Richard A. [2 ]
机构
[1] UCL, London, England
[2] Univ Kent, Canterbury, Kent, England
关键词
Informative prior distributions; Known presences; Likelihood symmetries; Logistic regression; Occupancy probability; Polya-gamma scheme; EDNA;
D O I
10.1111/rssc.12390
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Environmental DNA is a survey tool with rapidly expanding applications for assessing the presence of a species at surveyed sites. Environmental DNA methodology is known to be prone to false negative and false positive errors at the data collection and laboratory analysis stages. Existing models for environmental DNA data require augmentation with additional sources of information to overcome identifiability issues of the likelihood function and do not account for environmental covariates that predict the probability of species presence or the probabilities of error. We present a novel Bayesian model for analysing environmental DNA data by proposing informative prior distributions for logistic regression coefficients that enable us to overcome parameter identifiability, while performing efficient Bayesian variable selection. Our methodology does not require the use of transdimensional algorithms and provides a general framework for performing Bayesian variable selection under informative prior distributions in logistic regression models.
引用
收藏
页码:377 / 392
页数:16
相关论文
共 33 条
  • [1] The ecology of environmental DNA and implications for conservation genetics
    Barnes, Matthew A.
    Turner, Cameron R.
    [J]. CONSERVATION GENETICS, 2016, 17 (01) : 1 - 17
  • [2] Environmental Conditions Influence eDNA Persistence in Aquatic Systems
    Barnes, Matthew A.
    Turner, Cameron R.
    Jerde, Christopher L.
    Renshaw, Mark A.
    Chadderton, W. Lindsay
    Lodge, David M.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (03) : 1819 - 1827
  • [3] Biggs J., 2014, TECHNICAL REPORT
  • [4] Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus)
    Biggs, Jeremy
    Ewald, Naomi
    Valentini, Alice
    Gaboriaud, Coline
    Dejean, Tony
    Griffiths, Richard A.
    Foster, Jim
    Wilkinson, John W.
    Arnell, Andy
    Brotherton, Peter
    Williams, Penny
    Dunn, Francesca
    [J]. BIOLOGICAL CONSERVATION, 2015, 183 : 19 - 28
  • [5] Bormpoudakis D., 2016, TECHNICAL REPORT
  • [6] Multivariate Bayesian variable selection and prediction
    Brown, PJ
    Vannucci, M
    Fearn, T
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 : 627 - 641
  • [7] Chang W, 2019, SHINY WEB APPL FRAME
  • [8] Chipman H., 2001, LECT NOTES MONOGRAPH, P65, DOI DOI 10.1214/LNMS/1215540964
  • [9] Determining the parametric structure of models
    Cole, D. J.
    Morgan, B. J. T.
    Titterington, D. M.
    [J]. MATHEMATICAL BIOSCIENCES, 2010, 228 (01) : 16 - 30
  • [10] Fearn T., 1999, REV REAL ACAD CIEN E, V93, P372