Study of the decomposition of a 0.62LiBH4-0.38NaBH4 mixture

被引:27
作者
Liu, Yinzhe [1 ]
Reed, Daniel [1 ]
Paterakis, Christos [1 ]
Vasquez, Luis Contreras [1 ]
Baricco, Marcell [2 ,3 ]
Book, David [1 ]
机构
[1] Univ Birmingham, Sch Met & Mat, Birmingham B15 2TT, W Midlands, England
[2] Univ Turin, Dept Chem, Via P Giuria 9, I-10125 Turin, Italy
[3] Univ Turin, NIS, Via P Giuria 9, I-10125 Turin, Italy
基金
英国工程与自然科学研究理事会;
关键词
Hydrogen storage; Eutectic borohydrides; Dehydrogenation; Decomposition; Powder X-ray diffraction; Raman spectroscopy; ENHANCED HYDROGEN DESORPTION; METAL BOROHYDRIDES; STORAGE PROPERTIES; LIBH4-CA(BH4)(2); REVERSIBILITY; LIBH4-MG(BH4)(2); NANOCONFINEMENT; STABILITY; PROGRESS;
D O I
10.1016/j.ijhydene.2017.03.141
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work highlights the dehydrogenation mechanisms of a 0.62LiBH(4)-0.38NaBH(4) mixture in the range of 25-650 degrees C in flowing Ar. The dehydrogenation starts from 287 degrees C followed by two decomposition steps at 488 degrees C and 540 degrees C. These peak temperatures are in the range of 470 degrees C (for pure LiBH4)-580 degrees C (for pure NaBH4) due to different Pauling electronegativity values for Li+ (0.98) and Na+ (0.93) that affects the stability and decomposition temperatures. The 1St step of dehydrogenation is accompanied with precipitation of LiH, Li2B12H12 and B in between 287 and 520 degrees C; whilst the 2nd step of dehydrogenation is mainly accompanied by the precipitation of Na and B when temperature is higher than 520 degrees C. The total amount of H-2 released is 10.8 wt.% that exceeds the estimated amount (8.9 wt.%), indicating less metal dodecaborate (than that for pure LiBH4) is formed during the decomposition. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:22480 / 22488
页数:9
相关论文
共 49 条
[1]   Reversibility aspect of lithium borohydrides [J].
Au, Ming ;
Walters, R. Tom .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (19) :10311-10316
[2]   A Relation Between Internuclear Distances and Bond Force Constants [J].
Badger, Richard M. .
JOURNAL OF CHEMICAL PHYSICS, 1934, 2 (03)
[3]   LiBH4-Mg(BH4)2: A Physical Mixture of Metal Borohydrides as Hydrogen Storage Material [J].
Bardaji, Elisa Gil ;
Zhao-Karger, Zhirong ;
Boucharat, Nancy ;
Nale, Angeloclaudio ;
van Setten, Michiell J. ;
Lohstroh, Wiehke ;
Roehm, Eva ;
Catti, Michele ;
Fichtner, Maximilian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :6095-6101
[4]  
Chater PA, 2009, MIXED ANION COMPLEX
[5]   Enhanced hydrogen desorption from the Co-catalyzed LiBH4-Mg(BH4)2 eutectic composite [J].
Chen, Juner ;
Zhang, Yao ;
Xiong, Zhitao ;
Wu, Guotao ;
Chu, Hailiang ;
He, Teng ;
Chen, Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (17) :12425-12431
[6]   Effective hydrogen storage: a strategic chemistry challenge [J].
David, William I. F. .
FARADAY DISCUSSIONS, 2011, 151 :399-414
[7]   A thermodynamic investigation of the LiBH4-NaBH4 system [J].
Dematteis, Erika M. ;
Roedern, Elsa ;
Pinatel, Eugenio R. ;
Corno, Marta ;
Jensen, Torben R. ;
Baricco, Marcello .
RSC ADVANCES, 2016, 6 (65) :60101-60108
[8]   A thermodynamic assessment of LiBH4 [J].
El Kharbachi, Abdelouahab ;
Pinatel, Eugenio ;
Nuta, Ioana ;
Baricco, Marcello .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2012, 39 :80-90
[9]   A review of hydrogen storage systems based on boron and its compounds [J].
Fakioglu, E ;
Yürüm, Y ;
Veziroglu, TN .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (13) :1371-1376
[10]   Role of Li2B12H12 for the Formation and Decomposition of LiBH4 [J].
Friedrichs, O. ;
Remhof, A. ;
Hwang, S. -J. ;
Zuettel, A. .
CHEMISTRY OF MATERIALS, 2010, 22 (10) :3265-3268