The heat kernel of a Schrodinger operator with inverse square potential

被引:16
作者
Ishige, Kazuhiro [1 ]
Kabeya, Yoshitsugu [2 ]
Ouhabaz, El Maati [3 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
[3] Univ Bordeaux, Inst Math, CNRS, UMR 5251, 351 Cours Liberat, F-33405 Talence, France
基金
日本学术振兴会;
关键词
35J10; 47E05; 35J08 (primary); 2ND-ORDER ELLIPTIC-OPERATORS; DESINGULARIZING WEIGHTS; PARABOLIC EQUATIONS; SEMIGROUPS; BOUNDS; NORMS; INEQUALITIES; BEHAVIOR;
D O I
10.1112/plms.12041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Schrodinger operator H=-+V(|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper bound for the correspond heat kernel p(x,y,t) of the type 0<p(x,y,t)C U(min{vertical bar x vertical bar,})U(min{vertical bar y vertical bar,})U()2 vertical bar x-y vertical bar 2Ctfor all x, yRN and t>0, where U is a positive harmonic function of H. Third, if U2 is an A2 weight on RN, then we prove a lower bound of a similar type.
引用
收藏
页码:381 / 410
页数:30
相关论文
共 27 条
[1]  
[Anonymous], REND SEM MAT U PADOV
[2]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[3]  
Aronson D.G., 1968, Ann. Scuola Norm. Sup. Pisa, V22, P607
[4]   Critical heat kernel estimates for Schrodinger operators via Hardy-Sobolev inequalities [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) :1-30
[5]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[6]  
Coddington E.A., 1955, THEORY ORDINARY DIFF
[7]   Off-diagonal heat kernel lower bounds without poincart [J].
Coulhon, T .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :795-816
[8]   Gaussian bounds for degenerate parabolic equations (vol 255, pg 283, 2008) [J].
Cruz-Uribe, D. ;
Rios, Cristian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (09) :3507-3513
[9]   LP NORMS OF NONCRITICAL SCHRODINGER SEMIGROUPS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (01) :95-115
[10]  
Grigoryan A., 2009, Heat kernel and analysis on manifolds