α-Wiener Bridges: Singularity of Induced Measures and Sample Path Properties

被引:11
作者
Barczy, Matyas [1 ]
Pap, Gyula [1 ]
机构
[1] Univ Debrecen, Fac Informat, H-4010 Debrecen, Hungary
基金
匈牙利科学研究基金会;
关键词
Induced measures; Sample path properties; Singularity; -Wiener bridges;
D O I
10.1080/07362991003704985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let us consider the process [image omitted] given by the SDE [image omitted], t[0, T), where , T(0, ), and (Bt)t epsilon 0 is a standard Wiener process. In case of 0, the process X() is known as an -Wiener bridge, in case of =1 as the usual Wiener bridge. We prove that for all , , , the probability measures induced by the processes X() and X() are singular on (C[0, T), B(C[0, T))). Further, we investigate regularity properties of [image omitted] as tT.
引用
收藏
页码:447 / 466
页数:20
相关论文
共 17 条
[1]  
[Anonymous], 1996, Probability Theory
[2]   Asymptotic inference for spatial autoregression and orthogonality of Ornstein-Uhlenbeck sheets [J].
Arató, M ;
Pap, G ;
van Zuijlen, MCA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) :219-229
[3]  
BARCZY M, 2008, ARXIV08102930V
[4]  
Baxter G, 1956, P AM MATH SOC, V7, P522
[5]   Random integral representation of operator-semi-self-similar processes with independent increments [J].
Becker-Kern, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (02) :327-344
[6]   Absolute continuity/singularity and relative entropy properties for probability measures induced by diffusions on infinite time intervals [J].
Ben-Ari, I ;
Pinsky, RG .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (02) :179-206
[7]  
BRENNAN MJ, 1990, J BUS, V63, P7
[8]  
Jacob J., 2003, Grundlehren der Mathematischen Wissenschaften, V288, DOI DOI 10.1007/978-3-662-05265-5
[9]  
Karatzas Ioannis, 1991, Brownian Motion and Stochastic Calculus, V2nd
[10]  
Kurchenko OO., 2003, THEOR PROBAB MATH ST, V67, P97