On growth of meromorphic solutions of some kind of non-homogeneous linear difference equations

被引:0
作者
Zheng, Xiu-Min [1 ]
Zhou, Yan-Ping [1 ]
机构
[1] Jiangxi Normal Univ, Inst Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex linear difference equation; meromorphic solution; order;
D O I
10.1007/s11766-019-3616-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the growth of meromorphic solutions of some kind of non-homogeneous linear difference equations with special meromorphic coefficients. When there are more than one coefficient having the same maximal order and the same maximal type, the estimates on the lower bound of the order of meromorphic solutions of the involved equations are obtained. Meanwhile, the above estimates are sharpened by combining the relative results of the corresponding homogeneous linear difference equations.
引用
收藏
页码:436 / 445
页数:10
相关论文
共 14 条
[1]  
Belaidi B., 2016, ACTA MATH ACAD PAEDA, V32, P101
[2]   Zeros of differences of meromorphic functions [J].
Bergweiler, Walter .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 :133-147
[3]  
[曹春雷 Cao Chunlei], 2002, [应用数学学报, Acta Mathematicae Applicatae Sinica], V25, P123
[4]   Growth and zeros of meromorphic solution of some linear difference equations [J].
Chen, Zong-Xuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :235-241
[5]  
Chen ZX, 1999, CHIN ANN MATH B, V20, P7, DOI DOI 10.1142/S0252959999000035
[6]   On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
RAMANUJAN JOURNAL, 2008, 16 (01) :105-129
[7]  
Goldberg AA., 1970, Distribution of values of meromorphic functions
[8]  
Hayman W. K., 1964, Meromorphic Functions
[9]   The properties of the meromorphic solutions of some difference equations [J].
Huang, Zhi-Bo ;
Chen, Zong-Xuan ;
Li, Qian .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (07) :1023-1036
[10]  
Laine I, 1993, NEVANLINNA THEORY CO