Thermal contact theory for estimating the thermal conductivity of nanofluids and composite materials

被引:6
作者
Mohamad, A. A. [1 ]
机构
[1] Univ Calgary, CEERE, Schulich Sch Engn, Dept Mech & Manuf Engn, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Thermal conductivity; Nanofluid; Thermal resistance; Heat transfer enhancement; CONVECTIVE HEAT-TRANSFER; MATRIX;
D O I
10.1016/j.applthermaleng.2017.03.110
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, extensive researches are going on the heat transfer enhancements of low thermal conductivity materials by adding a few percentage of high thermal conductivity materials, especially in the topic of the nanofluids and polymers. Also, metal meshes have been used in the thermal storage systems to enhancing the thermal conductivity of the systems. A few theories have been suggested on the heat transfer enhancement in nanofluids or composite materials. However, the discrepancies in the published experimental data are wide and results are not conclusive. In this work, the most popular models are discussed and critically analyzed. Also, a model is developed based on thermal resistance analysis and compared with those models. Furthermore, numerical analyses are performed to closely understand the effect of adding a few percentage of high thermal conductive material to a low thermal conductive material. The findings are very interesting, where more than 30% enhancements can be achieved if a small percentage of high thermal conductivity of material embedded in a low thermal conductivity materials, provided that the particles are long enough and align with the temperature gradient. However, if the particles align perpendicular to the temperature gradient, the heat transfer enhancement is insignificant. Hence, aspect ratio and orientation of the particles are the defining factors in heat transfer enhancement. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 186
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 1891, TREATISE ELECT MAGNE
[2]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[3]   Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement -: art. no. 153107 [J].
Chon, CH ;
Kihm, KD ;
Lee, SP ;
Choi, SUS .
APPLIED PHYSICS LETTERS, 2005, 87 (15) :1-3
[4]   Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids [J].
Corcione, Massimo .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (01) :789-793
[5]   Thermal conductivity enhancement of energy storage media using carbon fibers [J].
Fukai, J ;
Kanou, M ;
Kodama, Y ;
Miyatake, O .
ENERGY CONVERSION AND MANAGEMENT, 2000, 41 (14) :1543-1556
[6]   Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid [J].
Garg, J. ;
Poudel, B. ;
Chiesa, M. ;
Gordon, J. B. ;
Ma, J. J. ;
Wang, J. B. ;
Ren, Z. F. ;
Kang, Y. T. ;
Ohtani, H. ;
Nanda, J. ;
McKinley, G. H. ;
Chen, G. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (07)
[7]   A review on natural convective heat transfer of nanofluids [J].
Haddad, Zoubida ;
Oztop, Hakan F. ;
Abu-Nada, Eiyad ;
Mataoui, Amina .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (07) :5363-5378
[8]   THERMAL CONDUCTIVITY OF HETEROGENEOUS 2-COMPONENT SYSTEMS [J].
HAMILTON, RL ;
CROSSER, OK .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1962, 1 (03) :187-&
[9]   Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study [J].
Ho, C. J. ;
Liu, W. K. ;
Chang, Y. S. ;
Lin, C. C. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (08) :1345-1353
[10]   PERFORMANCE AND MODELING OF LATENT-HEAT STORES [J].
HOOGENDOORN, CJ ;
BART, GCJ .
SOLAR ENERGY, 1992, 48 (01) :53-58