Duality in vector optimization in Banach spaces with generalized convexity

被引:27
作者
Mishra, SK [1 ]
Giorgi, G
Wang, SY
机构
[1] Govind Ballabh Pant Univ Agr & Technol, Coll Basic Sci & Humanities, Dept Math Stat & C Sc, Pantnagar 263145, Uttar Pradesh, India
[2] Univ Pavia, Dept Management Sci, Sect Gen & Appl Math, Pavia, Italy
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
duality; nonsmooth programming; optimality conditions; type-I functions; vector optimization;
D O I
10.1023/B:JOGO.0000047911.03061.88
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a vector optimization problem with functions defined on Banach spaces. A few sufficient optimality conditions are given and some results on duality are proved.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 18 条
[1]  
Bhatja D., 1994, Optimization, V31, P153
[2]   Optimality conditions for Pareto nonsmooth nonconvex programming in Banach spaces [J].
Brandao, AJV ;
Rojas-Medar, MA ;
Silva, GN .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (01) :65-73
[3]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[4]   OPTIMALITY CONDITIONS FOR MULTIOBJECTIVE AND NONSMOOTH MINIMIZATION IN ABSTRACT SPACES [J].
COLADAS, L ;
LI, Z ;
WANG, S .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 50 (02) :205-218
[5]   NONSMOOTH MULTIOBJECTIVE PROGRAMMING [J].
CRAVEN, BD .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1989, 10 (1-2) :49-64
[6]  
El Abdouni B., 1992, Optimization, V26, P277, DOI 10.1080/02331939208843857
[7]  
Giorgi G, 1996, J INFORM OPTIM SCI, V17, P137
[8]   NECESSARY AND SUFFICIENT CONDITIONS IN CONSTRAINED OPTIMIZATION [J].
HANSON, MA ;
MOND, B .
MATHEMATICAL PROGRAMMING, 1987, 37 (01) :51-58
[9]   OPTIMALITY CRITERIA AND DUALITY IN MULTIPLE-OBJECTIVE OPTIMIZATION INVOLVING GENERALIZED INVEXITY [J].
KAUL, RN ;
SUNEJA, SK ;
SRIVASTAVA, MK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (03) :465-482
[10]  
KIM DS, 1999, OPTIMALITY CONDITION, P608