Sobolev active contours

被引:113
|
作者
Sundaramoorthi, Ganesh [1 ]
Yezzi, Anthony
Mennucci, Andrea C.
机构
[1] Georgia Inst Technol, Sch Elect Engn, Atlanta, GA 30332 USA
[2] Scuola Normale Super Pisa, Pisa, Italy
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
active contours; gradient flows; Sobolev norm; global flows; shape optimization;
D O I
10.1007/s11263-006-0635-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
All previous geometric active contour models that have been formulated as gradient flows of various energies use the same L-2-type inner product to define the notion of gradient. Recent work has shown that this inner product induces a pathological Riemannian metric on the space of smooth curves. However, there are also undesirable features associated with the gradient flows that this inner product induces. In this paper, we reformulate the generic geometric active contour model by redefining the notion of gradient in accordance with Sobolev-type inner products. We call the resulting flows Sobolev active contours. Sobolev metrics induce favorable regularity properties in their gradient flows. In addition, Sobolev active contours favor global translations, but are not restricted to such motions; they are also less susceptible to certain types of local minima in contrast to traditional active contours. These properties are particularly useful in tracking applications. We demonstrate the general methodology by reformulating some standard edge-based and region-based active contour models as Sobolev active contours and show the substantial improvements gained in segmentation.
引用
收藏
页码:345 / 366
页数:22
相关论文
共 50 条
  • [31] Affine Invariant Detection: Edge Maps, Anisotropic Diffusion, and Active Contours
    Peter J. Olver
    Guillermo Sapiro
    Allen Tannenbaum
    Acta Applicandae Mathematica, 1999, 59 : 45 - 77
  • [32] Image segmentation using active contours: Calculus of variations or shape gradients?
    Aubert, G
    Barlaud, M
    Faugeras, O
    Jehan-Besson, S
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (06) : 2128 - 2154
  • [33] Localizing Region-Based Active Contours
    Lankton, Shawn
    Tannenbaum, Allen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (11) : 2029 - 2039
  • [34] Local Region Descriptors for Active Contours Evolution
    Darolti, Cristina
    Mertins, Alfred
    Bodensteiner, Christoph
    Hofmann, Ulrich G.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (12) : 2275 - 2288
  • [35] Automated Parameterization of Active Contours: A Brief Survey
    Mylona, E. A.
    Savelonas, M. A.
    Maroulis, D.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (IEEE ISSPIT 2013), 2013, : 344 - 349
  • [36] Adaptive smoothness based robust active contours
    Srikrishnan, V.
    Chaudhuri, Subhasis
    IMAGE AND VISION COMPUTING, 2011, 29 (05) : 317 - 328
  • [37] An optimally fast greedy algorithm for active contours
    Mirhosseini, AR
    Yan, H
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1189 - 1192
  • [38] ROBUST ACTIVE CONTOURS FOR MAMMOGRAM IMAGE SEGMENTATION
    Soomro, Shafiullah
    Choi, Kwang Nam
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2149 - 2153
  • [39] Robust parametric active contours:: the Sandwich Snakes
    Velasco, FA
    Marroquín, JL
    MACHINE VISION AND APPLICATIONS, 2001, 12 (05) : 238 - 242
  • [40] Hyperspectral image segmentation using active contours
    Lee, CP
    Snyder, WE
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY X, 2004, 5425 : 159 - 169