Radiocarbon (C-14) dates are the most important means for determining the age of Holocene archaeological deposits. The theoretical physical basis of this method is by now unassailable, having been consistently tested and refined over two generations. However, the means by which this method has been applied and the interpretation of these results remain as key issues, particularly for complex archaeological discoveries that substantially affect our understanding of world prehistory and social evolution. Many factors can produce uncertainty or variation in the C-14 concentrations of samples, even those that have been selected from the same archaeological context or event. A number of recent studies have also addressed the ways in which ambiguities and irregularities in the C-14 calibration curve can affect the interpretation of archaeological dates and temporal patterns. Of greatest concern, however, is a growing practice of using only one or two samples to date a significant prehistoric context or event. The date of these events, usually relative to other human activities, often holds important theoretical implications for evolutionary anthropology and related disciplines. In this article, we demonstrate that such a practice is rarely adequate or acceptable. Rather, proper procedure requires a suite of dates that permit statistical verification that the deposit or event itself is being correctly dated. We present a detailed case study that highlights the importance of analyzing multiple samples of C-14 from significant archaeological contexts.