Modeling Bias Error in 4D Flow MRI Velocity Measurements

被引:8
|
作者
Rothenberger, Sean M. [1 ]
Zhang, Jiacheng [2 ]
Brindise, Melissa C. [2 ]
Schnell, Susanne [3 ]
Markl, Michael [4 ]
Vlachos, Pavlos P. [1 ,2 ]
Rayz, Vitaliy L. [1 ,2 ]
机构
[1] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
[4] Northwestern Univ, Feinberg Sch Med, Dept Radiol, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
Magnetic resonance imaging; Velocity measurement; Measurement uncertainty; Mathematical models; Spatial resolution; Numerical models; Fluid flow measurement; Hemodynamics; magnetic resonance velocimetry (MRV); partial volume effects; phase contrast magnetic resonance imaging (PC-MRI); systematic error; WALL SHEAR-STRESS; PHASE-CONTRAST MRI; IN-VIVO; INTRACRANIAL ANEURYSMS; BLOOD-FLOW; PATTERNS; IMAGES;
D O I
10.1109/TMI.2022.3149421
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a model to estimate the bias error of 4D flow magnetic resonance imaging (MRI) velocity measurements. The local instantaneous bias error is defined as the difference between the expectation of the voxel's measured velocity and actual velocity at the voxel center. The model accounts for bias error introduced by the intra-voxel velocity distribution and partial volume (PV) effects. We assess the intra-voxel velocity distribution using a 3D Taylor Series expansion. PV effects and numerical errors are considered using a Richardson extrapolation. The model is applied to synthetic Womersley flow and in vitro and in vivo 4D flow MRI measurements in a cerebral aneurysm. The bias error model is valid for measurements with at least 3.75 voxels across the vessel diameter and signal-to-noise ratio greater than 5. All test cases exceeded this diameter to voxel size ratio with diameters, isotropic voxel sizes, and velocity ranging from 3-15mm, 0.5-1mm, and 0-60cm/s, respectively. The model accurately estimates the bias error in voxels not affected by PV effects. In PV voxels, the bias error is an order of magnitude higher, and the accuracy of the bias error estimation in PV voxels ranges from 67.3% to 108% relative to the actual bias error. The bias error estimated for in vivo measurements increased two-fold at systole compared to diastole in partial volume and non-partial volume voxels, suggesting the bias error varies over the cardiac cycle. This bias error model quantifies 4D flow MRI measurement accuracy and can help plan 4D flow MRI scans.
引用
收藏
页码:1802 / 1812
页数:11
相关论文
共 50 条
  • [41] 4D flow MRI for the analysis of celiac trunk and mesenteric artery stenoses
    Siedek, Florian
    Giese, Daniel
    Weiss, Kilian
    Ekdawi, Sandra
    Brinkmann, Sebastian
    Schroeder, Wolfgang
    Bruns, Christiane
    Chang, De-Hua
    Persigehl, Thorsten
    Maintz, David
    Haneder, Stefan
    MAGNETIC RESONANCE IMAGING, 2018, 53 : 52 - 62
  • [42] 4D flow MRI for the assessment of renal transplant dysfunction: initial results
    Bane, Octavia
    Said, Daniela
    Weiss, Amanda
    Stocker, Daniel
    Kennedy, Paul
    Hectors, Stefanie J.
    Khaim, Rafael
    Salem, Fadi
    Delaney, Veronica
    Menon, Madhav C.
    Markl, Michael
    Lewis, Sara
    Taouli, Bachir
    EUROPEAN RADIOLOGY, 2021, 31 (02) : 909 - 919
  • [43] Retrospectively Gated Intracardiac 4D Flow MRI Using Spiral Trajectories
    Petersson, Sven
    Sigfridsson, Andreas
    Dyverfeldt, Petter
    Carlhall, Carl-Johan
    Ebbers, Tino
    MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (01) : 196 - 206
  • [44] Evaluating a Phase-Specific Approach to Aortic Flow: A 4D Flow MRI Study
    Ramaekers, Mitch J. F. G.
    Westenberg, Jos J. M.
    Venner, Max F. G. H. M.
    Juffermans, Joe F.
    van Assen, Hans C.
    te Kiefte, Bastiaan J. C.
    Adriaans, Bouke P.
    Lamb, Hildo J.
    Wildberger, Joachim E.
    Schalla, Simon
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 59 (03) : 1056 - 1067
  • [45] Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta
    van Ooij, Pim
    Powell, Alexander L.
    Potters, Wouter V.
    Carr, James C.
    Markl, Michael
    Barker, Alex J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) : 236 - 248
  • [46] Stochastic 4D Flow Vector-Field Signatures: A New Approach for Comprehensive 4D Flow MRI Quantification
    Elbaz, Mohammed S. M.
    Malaisrie, Chris
    McCarthy, Patrick
    Markl, Michael
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 215 - 224
  • [47] Assessing cerebral arterial pulse wave velocity using 4D flow MRI
    Bjornfot, Cecilia
    Garpebring, Anders
    Qvarlander, Sara
    Malm, Jan
    Eklund, Anders
    Wahlin, Anders
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (10) : 2769 - 2777
  • [48] 4D flow MRI hemodynamic biomarkers for cerebrovascular diseases
    Wahlin, Anders
    Eklund, Anders
    Malm, Jan
    JOURNAL OF INTERNAL MEDICINE, 2022, 291 (02) : 115 - 127
  • [49] 4D flow MRI applications in congenital heart disease
    Judy Rizk
    European Radiology, 2021, 31 : 1160 - 1174
  • [50] Fast Interactive Exploration of 4D MRI Flow Data
    Hennemuth, A.
    Friman, O.
    Schumann, C.
    Bock, J.
    Drexl, J.
    Huellebrand, M.
    Markl, M.
    Peitgen, H. -O.
    MEDICAL IMAGING 2011: VISUALIZATION, IMAGE-GUIDED PROCEDURES, AND MODELING, 2011, 7964