Substrate Crossover Effect and Performance Regeneration of the Biofouled Rotating Air-Cathode in Microbial Fuel Cell

被引:10
作者
Chen, Shuiliang [1 ,2 ]
Patil, Sunil A. [2 ,3 ]
Schroeder, Uwe [2 ]
机构
[1] Jiangxi Normal Univ, Inst Adv Mat, Dept Chem & Chem Engn, Nanchang, Jiangxi, Peoples R China
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Environm & Sustainable Chem, Braunschweig, Germany
[3] Indian Inst Sci Educ & Res, Dept Earth & Environm Sci, Mohali, India
基金
中国国家自然科学基金;
关键词
microbial fuel cell; biofouled rotating air-cathode; oxygen reduction reaction; substrate crossover; performance regeneration; OXYGEN REDUCTION REACTION; NITROGEN-DOPED CARBON; ELECTRICITY-GENERATION; EFFICIENT CATALYST; TRANSPORT; MEMBRANE; TEMPERATURE; CONVERSION; BIOFILM; ROLES;
D O I
10.3389/fenrg.2018.00085
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In case of conventional two-dimensional air-cathodes in microbial fuel cells, biofouling usually covers the catalytic-layer side after a long-term operation and results in performance decrease mainly by obstructing the transfer of OH- ions. This study on a biofouled three-dimensional rotating air-cathode (bio-RAC), demonstrates that besides the OH- effect, substrate crossover acts as a key hindrance to the air-cathode performance. MFC operation and cyclic voltammogram results revealed that about 35% performance decrease of the bio-RAC performance was caused by the obstruction of oxygen and OH- transfer. It decreased further by 26.8 and 52.7% in the presence of 3 and 10 mM acetate, respectively, thereby clearly suggesting the impact of substrate crossover on the oxygen reduction reaction at the bio-RAC. In particular, high substrate concentrations exceeded the effect caused by obstruction of oxygen and OH- transfer on the oxygen reduction catalysis. A simple approach of applying a high-speed rotation of about 500 rpm to the biofouled air cathode was proved to be able to recover 85% of the initial performance of the bio-RAC.
引用
收藏
页数:7
相关论文
共 31 条
[1]   A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells [J].
Chen, Shuiliang ;
Patil, Sunil A. ;
Schroeder, Uwe .
APPLIED ENERGY, 2018, 211 :1089-1094
[2]   Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells [J].
Chen, Shuiliang ;
Chen, Yu ;
He, Guanghua ;
He, Shuijian ;
Schroeder, Uwe ;
Hou, Haoqing .
BIOSENSORS & BIOELECTRONICS, 2012, 34 (01) :282-285
[3]   Open air biocathode enables effective electricity generation with microbial fuel cells [J].
Clauwaert, Peter ;
Van der Ha, David ;
Boon, Nico ;
Verbeken, Kim ;
Verhaege, Marc ;
Rabaey, Korneel ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (21) :7564-7569
[4]   Catalysis Kinetics and Porous Analysis of Rolling Activated Carbon-PTFE Air-Cathode in Microbial Fuel Cells [J].
Dong, Heng ;
Yu, Hongbing ;
Wang, Xin .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (23) :13009-13015
[5]   Microbial Catalysis of the Oxygen Reduction Reaction for Microbial Fuel Cells: A Review [J].
Erable, Benjamin ;
Feron, Damien ;
Bergel, Alain .
CHEMSUSCHEM, 2012, 5 (06) :975-987
[6]   Easy-to-Operate and Low-Temperature Synthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as Cathode Catalyst in Microbial Fuel Cells [J].
Feng, Leiyu ;
Chen, Yinguang ;
Chen, Lang .
ACS NANO, 2011, 5 (12) :9611-9618
[7]   Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells [J].
Feng, Leiyu ;
Yan, Yuanyuan ;
Chen, Yinguang ;
Wang, Lijun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1892-1899
[8]   From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems [J].
Harnisch, Falk ;
Schroeder, Uwe .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4433-4448
[9]   Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes [J].
Harnisch, Falk ;
Wirth, Sebastian ;
Schroeder, Uwe .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) :2253-2256
[10]   Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors [J].
He, Shuijian ;
Hu, Xiaowu ;
Chen, Shuiliang ;
Hu, Huan ;
Hanif, Muddasir ;
Hou, Haoqing .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :5114-5120