Interfacial intermixing and anti-phase boundaries in GaP/Si (001) heterostructures

被引:1
作者
Boley, Allison [1 ]
Luna, Esperanza [2 ]
Zhang, C. [3 ]
Faleev, N. [3 ,4 ]
Honsberg, C. B. [3 ]
Smith, David J. [1 ]
机构
[1] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[2] Leibniz Inst Forsch Verbund Berlin eV, Paul Drude Inst Festkorperelekt, Hausvogteipl 5-7, D-10117 Berlin, Germany
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[4] RAS, Ioffe Phys Tech Inst, St Petersburg, Russia
基金
美国国家科学基金会;
关键词
A1; Characterization; Crystal structure; A3; Molecular beam epitaxy; B2; Semiconducting materials; GROWTH; SILICON; SI;
D O I
10.1016/j.jcrysgro.2021.126059
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Epitaxial GaP/Si heterostructures grown by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE) have been studied, primarily using aberration-corrected scanning transmission electron microscopy (ACSTEM). Atomically-resolved structure images, which are sensitive to atomic-column intensity revealed the detailed geometry of antiphase boundaries that were both parallel and also inclined to the growth direction. The polar/non-polar GaP/Si interfaces were neither atomically flat laterally nor abrupt vertically. Measurements of intensity profiles using both bright-field and dark-field AC-STEM images, as well as chemically-sensitive g002 dark-field imaging, indicated substantial interfacial intermixing, which increased significantly from -1.3 nm (MEE growth at 440 ?C) to -2.1 nm (MBE growth at 600 ?C). The finite interface width will impact theoretical predictions of charge imbalance and strong electric fields across the heterointerface.
引用
收藏
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2001, New Semiconductor Materials. Characteristics and Properties
[2]   GaP heteroepitaxy on Si(001): Correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure [J].
Beyer, A. ;
Ohlmann, J. ;
Liebich, S. ;
Heim, H. ;
Witte, G. ;
Stolz, W. ;
Volz, K. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
[3]   Pyramidal Structure Formation at the Interface between III/V Semiconductors and Silicon [J].
Beyer, Andreas ;
Stegmueller, Andreas ;
Oelerich, Jan O. ;
Jandieri, Kakhaber ;
Werner, Katharina ;
Mette, Gerson ;
Stolz, Wolfgang ;
Baranovskii, Sergei D. ;
Tonner, Ralf ;
Volz, Kerstin .
CHEMISTRY OF MATERIALS, 2016, 28 (10) :3265-3275
[4]   Influence of crystal polarity on crystal defects in GaP grown on exact Si (001) [J].
Beyer, Andreas ;
Nemeth, Igor ;
Liebich, Sven ;
Ohlmann, Jens ;
Stolz, Wolfgang ;
Volz, Kerstin .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[5]   Characterization of the absolute crystal polarity across twin boundaries in gallium phosphide using convergent-beam electron diffraction [J].
Cohen, D ;
McKernan, S ;
Carter, CB .
MICROSCOPY AND MICROANALYSIS, 1999, 5 (03) :173-186
[6]   Effect of two-step growth process on structural, optical and electrical properties of MOVPE-grown GaP/Si [J].
Dixit, V. K. ;
Ganguli, Tapas ;
Sharma, T. K. ;
Singh, S. D. ;
Kumar, Ravi ;
Porwal, S. ;
Tiwari, Pragya ;
Ingale, Alka ;
Oak, S. M. .
JOURNAL OF CRYSTAL GROWTH, 2008, 310 (15) :3428-3435
[7]   Indirect in situ characterization of Si(100) substrates at the initial stage of III-V heteroepitaxy [J].
Doescher, Henning ;
Supplie, Oliver ;
Brueckner, Sebastian ;
Hannappel, Thomas ;
Beyer, Andreas ;
Ohlmann, Jens ;
Volz, Kerstin .
JOURNAL OF CRYSTAL GROWTH, 2011, 315 (01) :16-21
[8]   MOVPE Grown Gallium Phosphide-Silicon Heterojunction Solar Cells [J].
Feifel, Markus ;
Ohlmann, Jens ;
Benick, Jan ;
Rachow, Thomas ;
Janz, Stefan ;
Hermle, Martin ;
Dimroth, Frank ;
Belz, Juergen ;
Beyer, Andreas ;
Volz, Kerstin ;
Lackner, David .
IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (02) :502-507
[9]   Nanometer-scale composition measurements of Ge/Si(100) islands [J].
Floyd, M ;
Zhang, YT ;
Driver, KP ;
Drucker, J ;
Crozier, PA ;
Smith, DJ .
APPLIED PHYSICS LETTERS, 2003, 82 (09) :1473-1475
[10]   POLAR-ON-NONPOLAR EPITAXY [J].
KROEMER, H .
JOURNAL OF CRYSTAL GROWTH, 1987, 81 (1-4) :193-204