CuO/WATER NANOFLUID FLOW OVER MICROSCALE BACKWARD-FACING STEP AND ANALYSIS OF HEAT TRANSFER PERFORMANCE

被引:14
作者
Ekiciler, Recep [1 ]
Arslan, Kamil [1 ]
机构
[1] Karabuk Univ, Mech Engn Dept, Fac Engn, TR-78050 Karabuk, Turkey
关键词
laminar flow; CuO/water nanofluid; microscale backward-facing step; forced convection; flow separation; heat transfer; PEC; recirculation zone; FORCED-CONVECTION; LAMINAR; SIMULATION; ADJACENT;
D O I
10.1615/HeatTransRes.2018020931
中图分类号
O414.1 [热力学];
学科分类号
摘要
Three-dimensional numerical simulation of steady-state laminar forced convection flow of a CuO/water nanofluid and heat transfer in a duct having a microscale backward-facing step (MBFS) are presented in this study. The study was conducted for determining the effects of nanoparticle volume fraction on the flow and heat transfer characteristics. The Reynolds number ranged from 100 to 1000. The step height and inlet height of the duct were 600 mu m and 400 mu m, respectively. The duct expansion ratio was 2.5. The downstream wall was subjected to a constant and uniform heat flux, whereas the other walls were insulated. The nanoparticle volume fraction varied from 1.0% to 4.0%. The Nusselt number and Darcy friction factor were obtained for each nanoparticle volume fraction. Plots of velocity streamlines were analyzed. It was found from the results of numerical simulation that the Nusselt number increases with increasing nanoparticle volume fraction and Reynolds number. The nanoparticle volume fraction does not exert any substantial effect on the Darcy friction factor and the length of the recirculation zone. Moreover, the performance evaluation criterion (PEC) was analyzed for nanoparticle volume fractions of 1.0%, 2.0%, 3.0%, and 4.0% of CuO. It was obtained that the volume fractions of 4.0% has the highest PEC in terms of heat transfer. It was obtained that while heat transfer for nanoparticle volume fraction of 30% and 4.0% the friction factor is superior for nanoparticle volume fraction of 1.0% and 2.0% due to the PEC number.
引用
收藏
页码:1489 / 1505
页数:17
相关论文
共 25 条
[1]   Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step [J].
Abu-Nada, Elyad .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2008, 29 (01) :242-249
[2]   Laminar forced convection flow over a backward facing step using nanofluids [J].
Al-aswadi, A. A. ;
Mohammed, H. A. ;
Shuaib, N. H. ;
Campo, Antonio .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (08) :950-957
[3]   Backward-facing step heat transfer of the turbulent regime for functionalized graphene nanoplatelets based water-ethylene glycol nanofluids [J].
Amiri, Ahmad ;
Arzani, Hamed Khajeh ;
Kazi, S. N. ;
Chew, B. T. ;
Badarudin, A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 97 :538-546
[4]   Investigation of Structural Stability, Dispersion, Viscosity, and Conductive Heat Transfer Properties of Functionalized Carbon Nanotube Based Nanofluids [J].
Aravind, S. S. Jyothirmayee ;
Baskar, Prathab ;
Baby, Tessy Theres ;
Sabareesh, R. Krishna ;
Das, Sumitesh ;
Ramaprabhu, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (34) :16737-16744
[5]   EXPERIMENTAL AND THEORETICAL INVESTIGATION OF BACKWARD-FACING STEP FLOW [J].
ARMALY, BF ;
DURST, F ;
PEREIRA, JCF ;
SCHONUNG, B .
JOURNAL OF FLUID MECHANICS, 1983, 127 (FEB) :473-496
[6]   Turbulent separated convection flow adjacent to backward-facing step-effects of step height [J].
Chen, Y. T. ;
Nie, J. H. ;
Armaly, B. F. ;
Hsieh, H. T. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (19-20) :3670-3680
[7]  
Choi SUS., 1995, ASMEPUBLICATIONS FED, V231, P99, DOI DOI 10.1063/1.1341218
[8]   Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls [J].
Corcione, Massimo .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) :1536-1546
[9]  
DENHAM MK, 1974, T I CHEM ENG-LOND, V52, P361
[10]   Brownian motion of nanoparticles in a triangular enclosure with natural convection [J].
Ghasemi, B. ;
Aminossadati, S. M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (06) :931-940