Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status

被引:95
|
作者
Li, Chunli [1 ,2 ]
Song, Lirong [2 ]
Yin, Jiandong [2 ]
机构
[1] China Med Univ, Sch Fundamental Sci, Dept Biomed Engn, Shenyang, Peoples R China
[2] China Med Univ, Shengjing Hosp, Dept Radiol, Shenyang, Peoples R China
关键词
breast cancer; radiomics; magnetic resonance imaging; Ki‐ 67; HER‐ 2; LYMPH-NODE METASTASIS; NEOADJUVANT CHEMOTHERAPY; ADJUVANT CHEMOTHERAPY; CANCER; EXPRESSION; INVASION; SUBTYPES; KI67; PROLIFERATION; TRASTUZUMAB;
D O I
10.1002/jmri.27651
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Radiomics has been applied to breast magnetic resonance imaging (MRI) for gene status prediction. However, the features of peritumoral regions were not thoroughly investigated. Purpose To evaluate the use of intratumoral and peritumoral regions from functional parametric maps based on breast dynamic contrast-enhanced MRI (DCE-MRI) for prediction of HER-2 and Ki-67 status. Study Type Retrospective. Population A total of 351 female patients (average age, 51 years) with pathologically confirmed breast cancer were assigned to the training (n = 243) and validation (n = 108) cohorts. Field Strength/Sequence 3.0T, T-1 gradient echo. Assessment Radiomic features were extracted from intratumoral and peritumoral regions on six functional parametric maps calculated using time-intensity curves of DCE-MRI. The intraclass correlation coefficients (ICCs) were used to determine the reproducibility of feature extraction. Based on the intratumoral, peritumoral, and combined intra- and peritumoral regions, three radiomics signatures (RSs) were built using the least absolute shrinkage and selection operator (LASSO) logistic regression model, respectively. Statistical Tests Wilcoxon rank-sum test, minimum redundancy maximum relevance, LASSO, receiver operating characteristic curve (ROC) analysis, and DeLong test. Results The intratumoral and peritumoral RSs for prediction of HER-2 and Ki-67 status achieved areas under the ROC (AUCs) of 0.683 (95% confidence interval [CI], 0.574-0.793) and 0.690 (95% CI, 0.577-0.804), and 0.714 (95% CI, 0.616-0.812) and 0.692 (95% CI, 0.590-0.794) in the validation cohort, respectively. The combined RSs yielded AUCs of 0.713 (95% CI, 0.604-0.823) and 0.749 (95% CI, 0.656-0.841), respectively. There were no significant differences in prediction performance among intratumoral, peritumoral, and combined RSs. Most (69.7%) of the features had good agreement (ICCs >0.8). Data Conclusion Radiomic features of intratumoral and peritumoral regions on functional parametric maps based on breast DCE-MRI had the potential to identify HER-2 and Ki-67 status. Technical Efficacy Stage: 2
引用
收藏
页码:703 / 714
页数:12
相关论文
共 47 条
  • [11] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Nathaniel M. Braman
    Maryam Etesami
    Prateek Prasanna
    Christina Dubchuk
    Hannah Gilmore
    Pallavi Tiwari
    Donna Plecha
    Anant Madabhushi
    Breast Cancer Research, 19
  • [12] Breast cancer Ki67 expression prediction by DCE-MRI radiomics features
    Ma, W.
    Ji, Y.
    Qi, L.
    Guo, X.
    Jian, X.
    Liu, P.
    CLINICAL RADIOLOGY, 2018, 73 (10) : 909.e1 - 909.e5
  • [13] Radiomics signatures for predicting the Ki-67 level and HER-2 status based on bone metastasis from primary breast cancer
    Zhang, Hongxiao
    Niu, Shuxian
    Chen, Huanhuan
    Wang, Lihua
    Wang, Xiaoyu
    Wu, Yujiao
    Shi, Jiaxin
    Li, Zhuoning
    Hu, Yanjun
    Yang, Zhiguang
    Jiang, Xiran
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 11
  • [14] Intratumoral and Peritumoral Multiparametric MRI-Based Radiomics Signature for Preoperative Prediction of Ki-67 Proliferation Status in Glioblastoma: A Two-Center Study
    Zhu, Xuechao
    He, Yulin
    Wang, Mengting
    Shu, Yuqin
    Lai, Xunfu
    Gan, Cuihua
    Liu, Lan
    ACADEMIC RADIOLOGY, 2024, 31 (04) : 1560 - 1571
  • [15] Prediction of HER2 status in breast cancer patients based on DCE-MRI imaging features combined Ki-67 and VEGF expression
    Huang, Zhiliang
    Qu, Tingting
    EUROPEAN JOURNAL OF GYNAECOLOGICAL ONCOLOGY, 2025, 46 (02) : 71 - 77
  • [16] Analysis of DCE-MRI features in tumor and the surrounding stroma for prediction of Ki-67 proliferation status in breast cancer
    Li, Hui
    Fan, Ming
    Zhang, Peng
    Li, Yuanzhe
    Cheng, Hu
    Zhang, Juan
    Shao, Guoliang
    Li, Lihua
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [17] Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features
    Wang, Jing
    Gao, Weiwei
    Lu, Min
    Yao, Xiaohua
    Yang, Debin
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [18] Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer
    Wang, Yunxia
    Shang, Yiyan
    Guo, Yaxin
    Hai, Menglu
    Gao, Yang
    Wu, Qingxia
    Li, Shunian
    Liao, Jun
    Sun, Xiaojuan
    Wu, Yaping
    Wang, Meiyun
    Tan, Hongna
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [19] Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study
    Jiang, Tao
    Song, Jiangdian
    Wang, Xiaoyu
    Niu, Shuxian
    Zhao, Nannan
    Dong, Yue
    Wang, Xingling
    Luo, Yahong
    Jiang, Xiran
    MOLECULAR IMAGING AND BIOLOGY, 2022, 24 (04) : 550 - 559
  • [20] Radiomics Analysis of Intratumoral and Various Peritumoral Regions From Automated Breast Volume Scanning for Accurate Ki-67 Prediction in Breast Cancer Using Machine Learning
    Hu, Bin
    Xu, Yanjun
    Gong, Huiling
    Tang, Lang
    Li, Hongchang
    ACADEMIC RADIOLOGY, 2025, 32 (02) : 651 - 663