DeepSun: machine-learning-as-a-service for solar flare prediction

被引:19
作者
Abduallah, Yasser [1 ,2 ]
Wang, Jason T. L. [1 ,2 ]
Nie, Yang [1 ,2 ]
Liu, Chang [1 ,3 ,4 ]
Wang, Haimin [1 ,3 ,4 ]
机构
[1] New Jersey Inst Technol, Inst Space Weather Sci, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[3] New Jersey Inst Technol, Big Bear Solar Observ, 40386 North Shore Lane, Big Bear City, CA 92314 USA
[4] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA
关键词
Sun; flares; activity; methods; data analysis;
D O I
10.1088/1674-4527/21/7/160
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Solar flare prediction plays an important role in understanding and forecasting space weather. The main goal of the Helioseismic and Magnetic Imager (HMI), one of the instruments on NASA's Solar Dynamics Observatory, is to study the origin of solar variability and characterize the Sun's magnetic activity. HMI provides continuous full-disk observations of the solar vector magnetic field with high cadence data that lead to reliable predictive capability; yet, solar flare prediction effort utilizing these data is still limited. In this paper, we present a machine-learning-as-a-service (MLaaS) framework, called DeepSun, for predicting solar flares on the web based on HMI's data products. Specifically, we construct training data by utilizing the physical parameters provided by the Space-weather HMI Active Region Patch (SHARP) and categorize solar flares into four classes, namely B, C, M and X, according to the X-ray flare catalogs available at the National Centers for Environmental Information (NCEI). Thus, the solar flare prediction problem at hand is essentially a multi-class (i.e., four-class) classification problem. The DeepSun system employs several machine learning algorithms to tackle this multi-class prediction problem and provides an application programming interface (API) for remote programming users. To our knowledge, DeepSun is the first MLaaS tool capable of predicting solar flares through the internet.
引用
收藏
页数:11
相关论文
共 35 条
[1]  
[Anonymous], 1965, MEDED VERH
[2]   A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP [J].
Barnes, G. ;
Leka, K. D. ;
Schrijver, C. J. ;
Colak, T. ;
Qahwaji, R. ;
Ashamari, O. W. ;
Yuan, Y. ;
Zhang, J. ;
McAteer, R. T. J. ;
Bloomfield, D. S. ;
Higgins, P. A. ;
Gallagher, P. T. ;
Falconer, D. A. ;
Georgoulis, M. K. ;
Wheatland, M. S. ;
Balch, C. ;
Dunn, T. ;
Wagner, E. L. .
ASTROPHYSICAL JOURNAL, 2016, 829 (02)
[3]   Probabilistic forecasting of solar flares from vector magnetogram data [J].
Barnes, G. ;
Leka, K. D. ;
Schumer, E. A. ;
Della-Rose, D. J. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2007, 5 (09)
[4]  
Benmerar T.Z., 2018, IEEE T SERV COMPUT
[5]   TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS [J].
Bloomfield, D. Shaun ;
Higgins, Paul A. ;
McAteer, R. T. James ;
Gallagher, Peter T. .
ASTROPHYSICAL JOURNAL LETTERS, 2012, 747 (02)
[6]   SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM [J].
Bobra, M. G. ;
Couvidat, S. .
ASTROPHYSICAL JOURNAL, 2015, 798 (02)
[7]   The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches [J].
Bobra, M. G. ;
Sun, X. ;
Hoeksema, J. T. ;
Turmon, M. ;
Liu, Y. ;
Hayashi, K. ;
Barnes, G. ;
Leka, K. D. .
SOLAR PHYSICS, 2014, 289 (09) :3549-3578
[8]  
Braspenning P.J., 1995, Lecture Notes in Computer
[9]  
Breiman L., 2017, Classification and Regression Trees, DOI 10.1201/9781315139470
[10]  
Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764