GridTracer: Automatic Mapping of Power Grids Using Deep Learning and Overhead Imagery

被引:4
作者
Huang, Bohao [1 ]
Yang, Jichen [1 ]
Streltsov, Artem [3 ]
Bradbury, Kyle [2 ,3 ]
Collins, Leslie M. [2 ]
Malof, Jordan M. [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Duke Univ, Elect & Comp Engn Dept, Durham, NC 27705 USA
[3] Duke Univ, Energy Initiat, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Deep learning; energy systems; object detection; power grid; remote sensing; TRANSMISSION TOWER;
D O I
10.1109/JSTARS.2021.3124519
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Energy system information for electricity access planning such as the locations and connectivity of electricity transmission and distribution towers-termed the power grid-is often incomplete, outdated, or altogether unavailable. Furthermore, conventional means for collecting this information is costly and limited. We propose to automatically map the grid in overhead remotely sensed imagery using an deep learning approach. Toward this goal, we develop and publicly release a large dataset (263 km(2)) of overhead imagery with ground-truth for the power grid-to our knowledge, this is the first dataset of its kind in the public domain. Additionally, we propose scoring metrics and baseline algorithms for two grid-mapping tasks: 1) tower recognition and 2) power line interconnection (i.e., estimating a graph representation of the grid). We hope the availability of the training data, scoring metrics, and baselines will facilitate rapid progress on this important problem to help decision-makers address the energy needs of societies around the world.
引用
收藏
页码:4956 / 4970
页数:15
相关论文
共 62 条
  • [31] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755
  • [32] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37
  • [33] A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
    Liu, Xiaoxuan
    Faes, Livia
    Kale, Aditya U.
    Wagner, Siegfried K.
    Fu, Dun Jack
    Bruynseels, Alice
    Mahendiran, Thushika
    Moraes, Gabriella
    Shamdas, Mohith
    Kern, Christoph
    Ledsam, Joseph R.
    Schmid, Martin K.
    Balaskas, Konstantinos
    Topol, Eric J.
    Bachmann, Lucas M.
    Keane, Pearse A.
    Denniston, Alastair K.
    [J]. LANCET DIGITAL HEALTH, 2019, 1 (06): : E271 - E297
  • [34] Maggiori E, 2017, INT GEOSCI REMOTE SE, P3226, DOI 10.1109/IGARSS.2017.8127684
  • [35] Malof J.M., 2019, ARXIV190210895
  • [36] Malof J. M., 2015, ARXIV190210895
  • [37] Automatic detection of solar photovoltaic arrays in high resolution aerial imagery
    Malof, Jordan M.
    Bradbury, Kyle
    Collins, Leslie M.
    Newell, Richard G.
    [J]. APPLIED ENERGY, 2016, 183 : 229 - 240
  • [38] DeepRoadMapper: Extracting Road Topology from Aerial Images
    Mattyus, Gelert
    Luo, Wenjie
    Urtasun, Raquel
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 3458 - 3466
  • [39] A GIS-based approach for electrification planning-A case study on Nigeria
    Mentis, Dimitrios
    Welsch, Manuel
    Nerini, Francesco Fuso
    Broad, Oliver
    Howells, Mark
    Bazilian, Morgan
    Rogner, Holger
    [J]. ENERGY FOR SUSTAINABLE DEVELOPMENT, 2015, 29 : 142 - 150
  • [40] Mnih V, 2010, LECT NOTES COMPUT SC, V6316, P210, DOI 10.1007/978-3-642-15567-3_16