Half-Metallicity and Magnetic Anisotropy in Transition-Metal-Atom-Doped Graphitic Germanium Carbide (g-GeC) Monolayers

被引:31
作者
Fan, Xueping [1 ,2 ]
Jiang, Jiawei [1 ]
Li, Rui [1 ]
Mi, Wenbo [1 ]
机构
[1] Tianjin Univ, Sch Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparat Te, Tianjin 300354, Peoples R China
[2] Qinghai Minzu Univ, Coll Phys & Elect Informat Engn, Xining 810007, Qinghai, Peoples R China
关键词
TOTAL-ENERGY CALCULATIONS; 1ST-PRINCIPLES; PHOSPHORENE;
D O I
10.1021/acs.jpcc.1c04139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ferromagnetic half-metallic materials with wide half-metallic gap, large magnetic anisotropy energy, and high Curie temperature have attracted much attention for their potential applications in spintronic devices. The electronic structure and magnetic properties of 3d, 4d, and Sd transition-metal-atom-(TM)-doped graphitic germanium carbide (g-GeC) monolayers have been systematically studied by first-principles calculations. The g-GeC monolayer doped with TMs has abundant properties of half-metals, metals, and semiconductors. Among them, the Cr, Mn, Fe, Co, Mo, and W atom-doped g-GeC monolayer shows half-metallic properties due to the hybridization of TMs-d and Ge/C-p orbitals, in which the spin-down channel is semiconducting with wide band gaps, i.e., 2.30, 2.19, 1.22, 1.00, 1.84, and 2.10 eV, respectively. Additionally, the Mn, Fe, Mo, and W atom-doped g-GeC monolayer shows perpendicular magnetic anisotropy (PMA), while the Co and Cr atoms show in-plane magnetic anisotropy. The PMA of W-atom-doped g-GeC monolayer is 3.46 mJ/m(2), which is attributed to the magnetic anisotropy contribution of W-(d(z)(2), d(xz)) and W-(d(yz), d(xz))orbitals coupling matrix elements. These results indicate that TM-doped g-GeC monolayers have potential applications in spintronic devices.
引用
收藏
页码:13688 / 13695
页数:8
相关论文
共 51 条
[1]   Transition-Metal-Boron Intermetallics with Strong Interatomic d-sp Orbital Hybridization for High-Performance Electrocatalysis [J].
Ai, Xuan ;
Zou, Xu ;
Chen, Hui ;
Su, Yutong ;
Feng, Xilan ;
Li, Qiuju ;
Liu, Yipu ;
Zhang, Yu ;
Zou, Xiaoxin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (10) :3961-3965
[2]   Effect of vertical electric field on the band dispersion and dielectric response of bilayer germanium carbide [J].
Behzad, Somayeh .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2019, 114
[3]   Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems [J].
Cheng, Y. C. ;
Zhu, Z. Y. ;
Mi, W. B. ;
Guo, Z. B. ;
Schwingenschloegl, U. .
PHYSICAL REVIEW B, 2013, 87 (10)
[4]   Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode [J].
Dey, Swagata ;
Chakraborty, Vedatrayee ;
Mukhopadhyay, Bratati ;
Sen, Gopa .
JOURNAL OF SEMICONDUCTORS, 2018, 39 (10)
[5]   Rashba spin splitting and photocatalytic properties of GeC-MSSe (M = Mo, W) van der Waals heterostructures [J].
Din, H. U. ;
Idrees, M. ;
Albar, Arwa ;
Shafiq, M. ;
Ahmad, Iftikhar ;
Nguyen, Chuong, V ;
Amin, Bin .
PHYSICAL REVIEW B, 2019, 100 (16)
[6]   Point defects in hexagonal germanium carbide monolayer: A first-principles calculation [J].
Ersan, Fatih ;
Gokce, Aytac Gurhan ;
Akturk, Ethem .
APPLIED SURFACE SCIENCE, 2016, 389 :1-6
[7]   Room temperature ferromagnetic half metal in Mn doped cluster-assembled sodalite phase of III-N compounds [J].
Fu, Jiaqi ;
Song, Tielei ;
Liang, Xixia ;
Zhao, Guojun ;
Liu, Zhifeng .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 499
[8]   ZnO/g-GeC van der Waals heterostructure: novel photocatalyst for small molecule splitting [J].
Gao, Xu ;
Shen, Yanqing ;
Ma, Yanyan ;
Wu, Shengyao ;
Zhou, Zhongxiang .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (16) :4791-4799
[9]   Graphene/g-GeC bilayer heterostructure: Modulated electronic properties and interface contact via external vertical strains and electric fileds [J].
Gao, Xu ;
Shen, Yanqing ;
Ma, Yanyan ;
Wu, Shengyao ;
Zhou, Zhongxiang .
CARBON, 2019, 146 :337-347
[10]   Magnetic 2D materials and heterostructures [J].
Gibertini, M. ;
Koperski, M. ;
Morpurgo, A. F. ;
Novoselov, K. S. .
NATURE NANOTECHNOLOGY, 2019, 14 (05) :408-419