PEMFC stack voltage singularity measurement and fault classification

被引:41
作者
Benouioua, D. [1 ,2 ]
Candusso, D. [1 ,2 ]
Harel, F. [2 ,3 ]
Oukhellou, L. [4 ]
机构
[1] IFSTTAR COSYS LTN, F-78000 Versailles Satory, France
[2] FC LAB, F-90010 Belfort, France
[3] Univ Lyon, IFSTTAR AME LTE, F-69675 Bron, France
[4] Univ Paris Est, IFSTTAR COSYS GRETTIA, F-77447 Champs Sur Marne 2, Marne La Vallee, France
关键词
Diagnosis; PEMFC; Singularity spectrum; Pattern recognition; Classification; DIAGNOSIS;
D O I
10.1016/j.ijhydene.2014.09.117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The study summarized in this paper deals with non-intrusive fault diagnosis of Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack. In the proposed approach, the diagnosis operation is based on the stack voltage singularity measurement and classification. To this aim, wavelet transform-based multifractal formalism, named WTMM (Wavelet Transform Modulus Maxima), and pattern recognition methods are combined to realize the identification of the PEMFC faults. The proposed method takes advantage of the non-linearities associated with discontinuities introduced in the dynamic response data resulting from various failure modes. Indeed, the singularities signature of poor operating conditions (faults) of the PEMFC is revealed through the computing of multifractal spectra. The obtained good classification rates demonstrate that the multifractal spectrum based on WTMM is effective to extract the incipient fault features during the PEMFC operation. The proposed method leads to a promising non-intrusive and low cost diagnostic tool to achieve on-line characterizations of dynamical PC behaviors. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:21631 / 21637
页数:7
相关论文
共 30 条
[1]   Wavelet based fractal analysis of DNA sequences [J].
Arneodo, A ;
dAubentonCarafa, Y ;
Bacry, E ;
Graves, PV ;
Muzy, JF ;
Thermes, C .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) :291-320
[2]   SINGULARITY SPECTRUM OF FRACTAL SIGNALS FROM WAVELET ANALYSIS - EXACT RESULTS [J].
BACRY, E ;
MUZY, JF ;
ARNEODO, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :635-674
[3]  
Benouioua-Ait Aouit D, 2013, EUR FUEL CELL TECHN
[4]  
Benouioua-Ait Aouit D, 2014, INT J HYDROGEN ENERG, V39, P2236
[5]   MULTIFRACTAL RADIOGRAPHIC ANALYSIS OF OSTEOPOROSIS [J].
CALIGIURI, P ;
GIGER, ML ;
FAVUS, M .
MEDICAL PHYSICS, 1994, 21 (04) :503-508
[6]   Diagnosis of PEM fuel cell stack dynamic behaviors [J].
Chen, Jixin ;
Zhou, Biao .
JOURNAL OF POWER SOURCES, 2008, 177 (01) :83-95
[7]   Financial market volatility and contagion effect: A copula-multifractal volatility approach [J].
Chen, Wang ;
Wei, Yu ;
Lang, Qiaoqi ;
Lin, Yu ;
Liu, Maojuan .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 398 :289-300
[8]  
Chorowski J, REV PERFORMANCE COMP
[9]   Model-based fault diagnosis in PEM fuel cell systems [J].
Escobet, T. ;
Feroldi, D. ;
de Lira, S. ;
Puig, V. ;
Quevedo, J. ;
Riera, J. ;
Serra, M. .
JOURNAL OF POWER SOURCES, 2009, 192 (01) :216-223
[10]   Taming the curse of dimensionality in kernels and novelty detection [J].
Evangelista, Paul F. ;
Embrechts, Mark J. ;
Szymanski, Boleslaw K. .
APPLIED SOFT COMPUTING TECHNOLOGIES: THE CHALLENGE OF COMPLEXITY, 2006, 34 :425-438