Interface Engineering of a 2D-C3N4/NiFe-LDH Heterostructure for Highly Efficient Photocatalytic Hydrogen Evolution

被引:78
作者
Yan, Jia [1 ,2 ]
Zhang, Xiandi [1 ,2 ]
Zheng, Weiran [1 ,2 ]
Lee, Lawrence Yoon Suk [1 ,2 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, State Key Lab Chem Biol & Drug Discovery, Kowloon, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Smart Energy, Kowloon, Hong Kong, Peoples R China
关键词
interface engineering; layered double hydroxide; carbon nitride; photocatalysis; hydrogen evolution reaction; CARBON NITRIDE SEMICONDUCTORS; CHARGE-TRANSFER; Z-SCHEME; WATER; NANOSHEETS; NANOCOMPOSITE; ARRAYS; CATALYSTS; G-C3N4;
D O I
10.1021/acsami.1c03240
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photocatalytic water splitting offers an economic and sustainable pathway for producing hydrogen as a zero-emission fuel, but it still suffers from low efficiencies limited by visible-light absorption capacity and charge separation kinetics. Herein, we report an interface-engineered 2D-C3N4/NiFe layered double hydroxide (CN/ LDH) heterostructure that shows highly enhanced photocatalytic hydrogen evolution reaction (HER) rate with excellent long-term stability. The morphology and band gap structure of NiFe-LDH are precisely regulated by employing NH4F as a structure-directing agent, which enables a fine interfacial tuning via coupling with 2D-C3N4. The formation of a type II interface in CN/LDH enlarges the active surface area and promotes the charge separation efficiency, leading to an HER rate of 3087 mu mol g(-1) h(-1), which is 14 times higher than that of 2D-C3N4. This study highlights a rational interface engineering strategy for the formation of a heterostructure with a proper hole transport co-catalyst for designing effective water-splitting photocatalysts.
引用
收藏
页码:24723 / 24733
页数:11
相关论文
共 56 条
[1]   Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride [J].
Acharya, Lopamudra ;
Nayak, Susanginee ;
Pattnaik, Sambhu Prasad ;
Acharya, Rashmi ;
Parida, Kulamani .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 566 :211-223
[2]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[3]   Bimetallic PtAu Alloy Nanoparticles-Integrated g-C3N4 Hybrid as an Efficient Photocatalyst for Water-to-Hydrogen Conversion [J].
Bhunia, Kousik ;
Chandra, Moumita ;
Khilari, Santimoy ;
Pradhan, Debabrata .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :478-488
[4]   Spatial charge separation on strongly coupled 2D-hybrid of rGO/La2Ti2O7/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation [J].
Boppella, Ramireddy ;
Choi, Chi Hun ;
Moon, Jooho ;
Kim, Dong Ha .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 239 :178-186
[5]   Gradient Energy Band Driven High-Performance Self-Powered Perovskite/CdS Photodetector [J].
Cao, Fengren ;
Meng, Linxing ;
Wang, Meng ;
Tian, Wei ;
Li, Liang .
ADVANCED MATERIALS, 2019, 31 (12)
[6]   2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction [J].
Cao, Shaowen ;
Shen, Baojia ;
Tong, Tong ;
Fu, Junwei ;
Yu, Jiaguo .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)
[7]   Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting [J].
Chen, Qian-Qian ;
Hou, Chun-Chao ;
Wang, Chuan-Jun ;
Yang, Xiao ;
Shi, Rui ;
Chen, Yong .
CHEMICAL COMMUNICATIONS, 2018, 54 (49) :6400-6403
[8]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+
[9]   High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes [J].
Chen, Yuejiao ;
Qu, Baihua ;
Hu, Lingling ;
Xu, Zhi ;
Li, Qiuhong ;
Wang, Taihong .
NANOSCALE, 2013, 5 (20) :9812-9820
[10]   Construction of Infrared-Light-Responsive Photoinduced Carriers Driver for Enhanced Photocatalytic Hydrogen Evolution [J].
Dai, Baoying ;
Fang, Jiaojiao ;
Yu, Yunru ;
Sun, Menglong ;
Huang, Hengming ;
Lu, Chunhua ;
Kou, Jiahui ;
Zhao, Yuanjin ;
Xu, Zhongzi .
ADVANCED MATERIALS, 2020, 32 (12)