Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

被引:414
作者
Lack, D. A. [1 ,2 ]
Cappa, C. D. [3 ]
机构
[1] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80304 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
关键词
OPTICAL-PROPERTIES; SUBSTANCES HULIS; CROSS-SECTION; CAVITY RING; AEROSOLS; PARTICLES; BIOMASS; HYGROSCOPICITY; EXTINCTION; BIAS;
D O I
10.5194/acp-10-4207-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The presence of clear coatings on atmospheric black carbon (BC) particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate that the enhancement of light absorption (E-Abs) by atmospheric black carbon (BC) when it is coated in mildly absorbing material (C-Brown) is reduced relative to the enhancement induced by non-absorbing coatings (C-Clear). This reduction, sensitive to both the C-Brown coating thickness and imaginary refractive index (RI), can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of C-Clear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with C-Brown is shown to be important to the calculated single scatter albedo only when models treat BC as large spherical cores (> 50 nm). For smaller BC cores (or fractal agglomerates) consideration of the BC and C-Brown as an external mixture leads to relatively small errors in the particle single scatter albedo of < 0.03. It has often been assumed that observation of an absorption Angstrom exponent (AAE)> 1 indicates absorption by a non-BC aerosol. Here, it is shown that BC cores coated in C-Clear can reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to C-Brown within ambient particles. However, an AAE < 1.6 does not exclude the possibility of C-Brown; rather C-Brown cannot be confidently assigned unless AAE > 1.6. Comparison of these model results to various ambient AAE measurements demonstrates that large-scale attribution of C-Brown is a challenging task using current in-situ measurement methods. We suggest that coincident measurements of particle core and shell sizes along with the AAE may be necessary to distinguish absorbing and non-absorbing OC.
引用
收藏
页码:4207 / 4220
页数:14
相关论文
共 50 条
[1]   Effect of intrinsic organic carbon on the optical properties of fresh diesel soot [J].
Adler, Gabriella ;
Riziq, Ali Abo ;
Erlick, Carynelisa ;
Rudich, Yinon .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (15) :6699-6704
[2]   Brown carbon spheres in East Asian outflow and their optical properties [J].
Alexander, Duncan T. L. ;
Crozier, Peter A. ;
Anderson, James R. .
SCIENCE, 2008, 321 (5890) :833-836
[3]   Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols [J].
Andreae, M. O. ;
Gelencser, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3131-3148
[4]   Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area [J].
Barnard, J. C. ;
Volkamer, R. ;
Kassianov, E. I. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (22) :6665-6679
[5]   Boundary layer aerosol chemistry during TexAQS/GoMACCS 2006: Insights into aerosol sources and transformation processes [J].
Bates, T. S. ;
Quinn, P. K. ;
Coffman, D. ;
Schulz, K. ;
Covert, D. S. ;
Johnson, J. E. ;
Williams, E. J. ;
Lerner, B. M. ;
Angevine, W. M. ;
Tucker, S. C. ;
Brewer, W. A. ;
Stohl, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113
[6]   Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering [J].
Bates, TS ;
Quinn, PK ;
Coffman, DJ ;
Johnson, JE ;
Middlebrook, AM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-14
[7]   Spectral absorption properties of atmospheric aerosols [J].
Bergstrom, R. W. ;
Pilewskie, P. ;
Russell, P. B. ;
Redemann, J. ;
Bond, T. C. ;
Quinn, P. K. ;
Sierau, B. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (23) :5937-5943
[8]  
Bohren C.F., 1983, Absorption and Scattering of Light by Small Particles
[9]   Limitations in the enhancement of visible light absorption due to mixing state [J].
Bond, Tami C. ;
Habib, Gazala ;
Bergstrom, Robert W. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D20)
[10]   Light absorption by carbonaceous particles: An investigative review [J].
Bond, TC ;
Bergstrom, RW .
AEROSOL SCIENCE AND TECHNOLOGY, 2006, 40 (01) :27-67