Effect of post-fire curing and silica fume on permeability of ultra-high performance concrete

被引:32
|
作者
Li, Ye [1 ]
机构
[1] Harbin Inst Technol, Sch Civil & Environm Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Elevated temperature; Post-fire curing; Permeability; Silica fume; Ultra-high performance concrete; HIGH-TEMPERATURE; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; ELEVATED-TEMPERATURE; MICROSTRUCTURE; RESISTANCE; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2021.123175
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates effects of post-fire curing and silica fume on permeability recovery of ultra-high performance concrete (UHPC). UHPC samples were heated to 200, 300, 600, and 900 degrees C. After cooled to ambient temperature, the samples were recurred in water for 28 days. Permeability, chemical composition, pore size distribution, and microstructure were measured and analyzed to reveal the post-fire curing mechanism. The results showed that permeability of the UHPC mixtures with and without silica fume decreased after 200 degrees C heating and increased after higher temperature exposure. The increase of permeability was mainly due to coarsening of microstructure and formation of microcracks. Permeability of the samples was recovered after 600 and 900 degrees C exposure and post-fire curing. The mixture without silica fume showed greater permeability recovery due to the newly formed Portlandite and C-S-H filled the fire-damaged microstructure effectively. However, with addition of silica fume, the loose Ettringite formed did not contribute to significant lowering of permeability. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effect of post-fire curing on compressive strength of ultra-high performance concrete and mortar
    Wang, Haodong
    Lyu, Hanxiong
    Liu, Tiejun
    Li, Ye
    Tan, Kang Hai
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 346
  • [2] Effects of Silica Fume Purity on Behavior of Ultra-High Performance Concrete
    Carey, Ashley S.
    Howard, Isaac L.
    Shannon, Jay
    ADVANCES IN CIVIL ENGINEERING MATERIALS, 2022, 11 (01): : 354 - 371
  • [3] Effect of Post-Fire Curing on the Compressive Properties of Fire-Damaged Ultra-High Toughness Cementitious Composites
    Ji, Jing
    Yu, Dianyou
    Jiang, Liangqin
    Xu, Zhichao
    Liu, Yingchun
    Zhang, Shilong
    JOURNAL OF TESTING AND EVALUATION, 2019, 47 (01) : 140 - 152
  • [4] Development of ultra-high performance concrete with high fire resistance
    Liang, Xiangwei
    Wu, Chengqing
    Su, Yu
    Chen, Zhu
    Li, Zhongxian
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 179 : 400 - 412
  • [5] Multi-response optimization of post-fire residual compressive strength of high performance concrete
    Rahim, Abdul
    Sharma, U. K.
    Murugesan, K.
    Sharma, A.
    Arora, P.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 38 : 265 - 273
  • [6] Role of silica fume on hydration and strength development of ultra-high performance concrete
    Xi, Juyu
    Liu, Jianzhong
    Yang, Kai
    Zhang, Shihao
    Han, Fangyu
    Sha, Jianfang
    Zheng, Xin
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 338
  • [7] Influence of silica fume and thermal curing on long-term hydration, microstructure and compressive strength of ultra-high performance concrete (UHPC)
    Xu, Disheng
    Tang, Jinhui
    Hu, Xiang
    Zhou, Yichuan
    Yu, Cheng
    Han, Fangyu
    Liu, Jiaping
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 395
  • [8] Effect of post-fire lime-saturated water and water-CO2 cyclic curing on strength recovery of thermally damaged high-performance concrete with different silica contents
    Li, Ye
    Wang, Haodong
    Shi, Caijun
    Zou, Dujian
    Zhou, Ao
    Liu, Tiejun
    CEMENT AND CONCRETE RESEARCH, 2023, 164
  • [9] The effect of curing regimes on the mechanical properties, nano-mechanical properties and microstructure of ultra-high performance concrete
    Shen, Peiliang
    Lu, Linnu
    He, Yongjia
    Wang, Fazhou
    Hu, Shuguang
    CEMENT AND CONCRETE RESEARCH, 2019, 118 : 1 - 13
  • [10] Durability of ultra-high performance concrete - A review
    Li, Junquan
    Wu, Zemei
    Shi, Caijun
    Yuan, Qiang
    Zhang, Zuhua
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 255