Effect of post-fire curing and silica fume on permeability of ultra-high performance concrete

被引:34
作者
Li, Ye [1 ]
机构
[1] Harbin Inst Technol, Sch Civil & Environm Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Elevated temperature; Post-fire curing; Permeability; Silica fume; Ultra-high performance concrete; HIGH-TEMPERATURE; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; ELEVATED-TEMPERATURE; MICROSTRUCTURE; RESISTANCE; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2021.123175
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper investigates effects of post-fire curing and silica fume on permeability recovery of ultra-high performance concrete (UHPC). UHPC samples were heated to 200, 300, 600, and 900 degrees C. After cooled to ambient temperature, the samples were recurred in water for 28 days. Permeability, chemical composition, pore size distribution, and microstructure were measured and analyzed to reveal the post-fire curing mechanism. The results showed that permeability of the UHPC mixtures with and without silica fume decreased after 200 degrees C heating and increased after higher temperature exposure. The increase of permeability was mainly due to coarsening of microstructure and formation of microcracks. Permeability of the samples was recovered after 600 and 900 degrees C exposure and post-fire curing. The mixture without silica fume showed greater permeability recovery due to the newly formed Portlandite and C-S-H filled the fire-damaged microstructure effectively. However, with addition of silica fume, the loose Ettringite formed did not contribute to significant lowering of permeability. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Effects of re-curing on microstructure of concrete after high temperature exposure [J].
Akca, Abdullah Huzeyfe ;
Ozyurt, Nilufer .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 168 :431-441
[2]   Effects of re-curing on residual mechanical properties of concrete after high temperature exposure [J].
Akca, Abdullah Huzeyfe ;
Ozyurt, Nilufer .
CONSTRUCTION AND BUILDING MATERIALS, 2018, 159 :540-552
[3]   The use of thermal analysis in assessing the effect of temperature on a cement paste [J].
Alarcon-Ruiz, L ;
Platret, G ;
Massieu, E ;
Ehrlacher, A .
CEMENT AND CONCRETE RESEARCH, 2005, 35 (03) :609-613
[4]   Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars [J].
Aydin, Serdar ;
Baradan, Buelent .
CEMENT AND CONCRETE RESEARCH, 2007, 37 (06) :988-995
[5]  
Buitelaar P., 2004, International Symposium on Ultra High Performance Concrete, P25
[6]  
Deer W A., 1997, Rock-Forming Minerals: Single-Chain Silicates, Volume, V2A
[7]  
Denarie Emmanuel., 2006, Restoration of Buildings and Monuments, V12, P453
[8]   High temperature behaviour of self-consolidating concrete Microstructure and physicochemical properties [J].
Fares, Hanaa ;
Remond, Sebastien ;
Noumowe, Albert ;
Cousture, Annelise .
CEMENT AND CONCRETE RESEARCH, 2010, 40 (03) :488-496
[9]   Permeability and pore structure evolution of silicocalcareous and hematite high-strength concretes submitted to high temperatures [J].
C. Gallé ;
J. Sercombe .
Materials and Structures, 2001, 34 (10) :619-628
[10]   The hardening behavior of γ-C2S binder using accelerated carbonation [J].
Guan, Xuemao ;
Liu, Songhui ;
Feng, Chunhua ;
Qiu, Man .
CONSTRUCTION AND BUILDING MATERIALS, 2016, 114 :204-207