Generalized maximum entropy estimation of a first order spatial autoregressive model

被引:11
|
作者
Marsh, TL [1 ]
Mittelhammer, RC [1 ]
机构
[1] Washington State Univ, Pullman, WA 99164 USA
来源
SPATIAL AND SPATIOTEMPORAL ECONOMETRICS | 2004年 / 18卷
关键词
D O I
10.1016/S0731-9053(04)18006-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators relative to classical estimators. Finally, the estimators are applied to an illustrative model allocating agricultural disaster payments.
引用
收藏
页码:199 / 234
页数:36
相关论文
共 50 条
  • [1] Maximum likelihood estimation of a spatial autoregressive Tobit model
    Xu, Xingbai
    Lee, Lung-fei
    JOURNAL OF ECONOMETRICS, 2015, 188 (01) : 264 - 280
  • [2] Maximum likelihood estimation for generalized conditionally autoregressive models of spatial data
    M. Kyung
    S. K. Ghosh
    Journal of the Korean Statistical Society, 2014, 43 : 339 - 353
  • [3] Maximum likelihood estimation for generalized conditionally autoregressive models of spatial data
    Kyung, M.
    Ghosh, S. K.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2014, 43 (03) : 339 - 353
  • [4] Sieve maximum likelihood estimation of the spatial autoregressive Tobit model
    Xu, Xingbai
    Lee, Lung-fei
    JOURNAL OF ECONOMETRICS, 2018, 203 (01) : 96 - 112
  • [5] Generalized maximum entropy estimation
    Sutter, Tobias
    Sutter, David
    Esfahani, Peyman Mohajerin
    Lygeros, John
    Journal of Machine Learning Research, 2019, 20
  • [6] Generalized maximum entropy estimation
    Sutter, Tobias
    Sutter, David
    Esfahani, Peyman Mohajerin
    Lygeros, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [7] Maximum entropy autoregressive conditional heteroskedasticity model
    Park, Sung Y.
    Bera, Anil K.
    JOURNAL OF ECONOMETRICS, 2009, 150 (02) : 219 - 230
  • [8] Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors
    Zhou, J
    Basawa, IV
    JOURNAL OF TIME SERIES ANALYSIS, 2005, 26 (06) : 825 - 842
  • [9] MAXIMUM LIKELIHOOD ESTIMATION IN AN N-TH ORDER AUTOREGRESSIVE DISTURBANCE MODEL
    CASSIDY, HJ
    SOUTHERN ECONOMIC JOURNAL, 1969, 35 (03) : 263 - 264
  • [10] Information Theory Estimators for the First-Order Spatial Autoregressive Model
    Perevodchikov, Evgeniy V.
    Marsh, Thomas L.
    Mittelhammer, Ron C.
    ENTROPY, 2012, 14 (07) : 1165 - 1185