Remarks on the Cwikel-Lieb-Rozenblum and Lieb-Thirring Estimates for Schrodinger Operators on Riemannian Manifolds

被引:3
作者
Ouhabaz, El Maati [1 ]
Poupaud, Cesar [2 ]
机构
[1] Univ Bordeaux 1, IMB, CNRS, Equipe Anal & Geometrie,UMR 5251, F-33405 Talence, France
[2] MIP CEREMATH, F-31000 Toulouse, France
关键词
Spectral theory; Schrodinger operator; Cwikel-Lieb-Rozenblum estimates; Lieb-Thirring estimates; Riemannian manifolds; ELLIPTIC-OPERATORS; INEQUALITIES; EIGENVALUES; KERNEL; BOUNDS;
D O I
10.1007/s10440-009-9519-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a general complete Riemannian manifold and consider a Schrodinger operator -Delta+V on L (2)(M). We prove Cwikel-Lieb-Rozenblum as well as Lieb-Thirring type estimates for -Delta+V. These estimates are given in terms of the potential and the heat kernel of the Laplacian on the manifold. Some of our results hold also for Schrodinger operators with complex-valued potentials.
引用
收藏
页码:1449 / 1459
页数:11
相关论文
共 23 条
[21]  
ROZENBLUM G, 1997, ST PETERSB MATH J, V9, P1195
[22]  
ROZENBLYUM GV, 1972, DOKL AKAD NAUK SSSR+, V202, P1012
[23]  
SALOFFCOSTE L, 1992, J DIFFER GEOM, V36, P417