Remarks on the Cwikel-Lieb-Rozenblum and Lieb-Thirring Estimates for Schrodinger Operators on Riemannian Manifolds

被引:3
作者
Ouhabaz, El Maati [1 ]
Poupaud, Cesar [2 ]
机构
[1] Univ Bordeaux 1, IMB, CNRS, Equipe Anal & Geometrie,UMR 5251, F-33405 Talence, France
[2] MIP CEREMATH, F-31000 Toulouse, France
关键词
Spectral theory; Schrodinger operator; Cwikel-Lieb-Rozenblum estimates; Lieb-Thirring estimates; Riemannian manifolds; ELLIPTIC-OPERATORS; INEQUALITIES; EIGENVALUES; KERNEL; BOUNDS;
D O I
10.1007/s10440-009-9519-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a general complete Riemannian manifold and consider a Schrodinger operator -Delta+V on L (2)(M). We prove Cwikel-Lieb-Rozenblum as well as Lieb-Thirring type estimates for -Delta+V. These estimates are given in terms of the potential and the heat kernel of the Laplacian on the manifold. Some of our results hold also for Schrodinger operators with complex-valued potentials.
引用
收藏
页码:1449 / 1459
页数:11
相关论文
共 23 条
[11]  
Kato T., 1966, Perturbation Theory for Linear Operators
[12]   Sharp Lieb-Thirring inequalities in high dimensions [J].
Laptev, A ;
Weidl, T .
ACTA MATHEMATICA, 2000, 184 (01) :87-111
[13]   The Rozenblum-Lieb-Cwikel inequality for Markov generators [J].
Levin, D ;
Solomyak, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 71 (1) :173-193
[14]   Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements [J].
Levitt, MD ;
Furne, JK ;
Kuskowski, M ;
Ruddy, J .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2006, 4 (02) :123-129
[15]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[16]   BOUNDS ON EIGENVALUES OF LAPLACE AND SCHROEDINGER OPERATORS [J].
LIEB, E .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 82 (05) :751-753
[17]  
LIEB EH, 1989, LECT NOTES PHYS, V345, P371
[18]  
Ouhabaz E.M., 2005, London Mathematical Society Monographs Series, V31
[19]  
REED M., 1978, Methods of Modern Mathematical Physics, IV: Analysis of operators
[20]   Analysis of degenerate elliptic operators of Grusin type [J].
Robinson, Derek W. ;
Sikora, Adam .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (03) :475-508