Remarks on the Cwikel-Lieb-Rozenblum and Lieb-Thirring Estimates for Schrodinger Operators on Riemannian Manifolds

被引:3
作者
Ouhabaz, El Maati [1 ]
Poupaud, Cesar [2 ]
机构
[1] Univ Bordeaux 1, IMB, CNRS, Equipe Anal & Geometrie,UMR 5251, F-33405 Talence, France
[2] MIP CEREMATH, F-31000 Toulouse, France
关键词
Spectral theory; Schrodinger operator; Cwikel-Lieb-Rozenblum estimates; Lieb-Thirring estimates; Riemannian manifolds; ELLIPTIC-OPERATORS; INEQUALITIES; EIGENVALUES; KERNEL; BOUNDS;
D O I
10.1007/s10440-009-9519-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a general complete Riemannian manifold and consider a Schrodinger operator -Delta+V on L (2)(M). We prove Cwikel-Lieb-Rozenblum as well as Lieb-Thirring type estimates for -Delta+V. These estimates are given in terms of the potential and the heat kernel of the Laplacian on the manifold. Some of our results hold also for Schrodinger operators with complex-valued potentials.
引用
收藏
页码:1449 / 1459
页数:11
相关论文
共 23 条
[1]   Bounds on complex eigenvalues and resonances [J].
Abramov, AA ;
Aslanyan, A ;
Davies, EB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (01) :57-72
[2]  
[Anonymous], 1994, ENCY MATH SCI
[3]  
BRUNEAU V, 2008, J MATH PHYS, V49, DOI DOI 10.1063/1.29699028
[4]  
Chavel Isaac, 1984, EIGENVALUES RIEMANNI
[5]   WEAK TYPE ESTIMATES FOR SINGULAR VALUES AND NUMBER OF BOUND-STATES OF SCHRODINGER OPERATORS [J].
CWIKEL, M .
ANNALS OF MATHEMATICS, 1977, 106 (01) :93-100
[6]  
Cycon H.L., 1987, Schrodinger Operators with Application to Quantum Mechanics and Global Geometry
[7]   Non-Gaussian aspects of heat kernel behaviour [J].
Davies, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 :105-125
[8]   Lieb-Thirring inequalities for Schrodinger operators with complex-valued potentials [J].
Frank, Rupert L. ;
Laptev, Ari ;
Lieb, Elliott H. ;
Seiringer, Robert .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) :309-316
[9]   THE HEAT-EQUATION ON NONCOMPACT RIEMANNIAN-MANIFOLDS [J].
GRIGORYAN, AA .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (01) :47-77
[10]  
Hislop P.D., 1996, APPL MATH SCI, V113