Blind source separation with optimal transport non-negative matrix factorization

被引:9
|
作者
Rolet, Antoine [1 ]
Seguy, Vivien [1 ]
Blondel, Mathieu [2 ]
Sawada, Hiroshi [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Yoshida Honmachi, Kyoto, Japan
[2] NTT Commun Sci Labs, Kyoto, Japan
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2018年
关键词
NMF; Speech; BSS; Optimal transport; ALGORITHMS;
D O I
10.1186/s13634-018-0576-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optimal transport as a loss for machine learning optimization problems has recently gained a lot of attention. Building upon recent advances in computational optimal transport, we develop an optimal transport non-negative matrix factorization (NMF) algorithm for supervised speech blind source separation (BSS). Optimal transport allows us to design and leverage a cost between short-time Fourier transform (SIFT) spectrogram frequencies, which takes into account how humans perceive sound. We give empirical evidence that using our proposed optimal transport, NMF leads to perceptually better results than NMF with other losses, for both isolated voice reconstruction and speech denoising using BSS. Finally, we demonstrate how to use optimal transport for cross-domain sound processing tasks, where frequencies represented in the input spectrograms may be different from one spectrogram to another.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Blind source separation with optimal transport non-negative matrix factorization
    Antoine Rolet
    Vivien Seguy
    Mathieu Blondel
    Hiroshi Sawada
    EURASIP Journal on Advances in Signal Processing, 2018
  • [2] SOURCE SEPARATION WITH SCATTERING NON-NEGATIVE MATRIX FACTORIZATION
    Bruna, Joan
    Sprechmann, Pablo
    LeCun, Yann
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1876 - 1880
  • [3] Sparsity Promoted Non-Negative Matrix Factorization for Source Separation and Detection
    Wang, Yanlin
    Li, Yun
    Ho, K. C.
    Zare, A.
    Skubic, M.
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 640 - 645
  • [4] Multi-source separation based on non-negative matrix factorization and source distribution
    Jia, Xinyu
    Jia, Maoshen
    Gao, Shang
    Zhang, Yu
    2021 IMMERSIVE AND 3D AUDIO: FROM ARCHITECTURE TO AUTOMOTIVE (I3DA), 2021,
  • [5] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [6] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [7] Separation of reflection components by sparse non-negative matrix factorization
    Akashi, Yasushi
    Okatani, Takayuki
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2016, 146 : 77 - 85
  • [8] Application of non-negative matrix factorization to LC/MS data
    Rapin, Jeremy
    Souloumiac, Antoine
    Bobin, Jerome
    Larue, Anthony
    Junot, Chistophe
    Ouethrani, Minale
    Starck, Jean-Luc
    SIGNAL PROCESSING, 2016, 123 : 75 - 83
  • [9] Blind separation of fluorescence spectra using sparse non-negative matrix factorization on right hand factor
    Yang, Ruifang
    Zhao, Nanjing
    Xiao, Xue
    Yu, Shaohui
    Liu, Jianguo
    Liu, Wenqing
    JOURNAL OF CHEMOMETRICS, 2015, 29 (08) : 442 - 447
  • [10] Non-negative Matrix Factorization: A Survey
    Gan, Jiangzhang
    Liu, Tong
    Li, Li
    Zhang, Jilian
    COMPUTER JOURNAL, 2021, 64 (07) : 1080 - 1092